Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning

被引:50
|
作者
Chaney, Nathaniel W. [1 ]
Herman, Jonathan D. [2 ]
Ek, Michael B. [3 ]
Wood, Eric F. [4 ]
机构
[1] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA
[2] UC, Dept Civil & Environm Engn, Davis, CA USA
[3] NOAA, EMC, NCEP, College Pk, MD USA
[4] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
关键词
SENSITIVITY-ANALYSIS; ETA-MODEL; LAYER; PREDICTION; MOISTURE; SCHEMES; DROUGHT; WEATHER; DATASET; IMPACT;
D O I
10.1002/2016JD024821
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of modelparameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (r(s,min)), the Zilitinkevich empirical constant (C-zil), and the bare soil evaporation exponent (fx(exp)). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.
引用
收藏
页码:13218 / 13235
页数:18
相关论文
共 50 条
  • [31] Scaling effects on modeled surface energy-balance components using the NOAH-OSU land surface model
    Sridhar, V
    Elliott, RL
    Chen, F
    JOURNAL OF HYDROLOGY, 2003, 280 (1-4) : 105 - 123
  • [32] Assessing parameter variability in a photosynthesis model within and between plant functional types using global Fluxnet eddy covariance data
    Groenendijk, M.
    Dolman, A. J.
    van der Molen, M. K.
    Leuning, R.
    Arneth, A.
    Delpierre, N.
    Gash, J. H. C.
    Lindroth, A.
    Richardson, A. D.
    Verbeeck, H.
    Wohlfahrt, G.
    AGRICULTURAL AND FOREST METEOROLOGY, 2011, 151 (01) : 22 - 38
  • [33] Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites
    Wu, Chaoyang
    Peng, Dailiang
    Soudani, Kamel
    Siebicke, Lukas
    Gough, Christopher M.
    Arain, M. Altaf
    Bohrer, Gil
    Lafleur, Peter M.
    Peichl, Matthias
    Gonsamo, Alemu
    Xu, Shiguang
    Fang, Bin
    Ge, Quansheng
    AGRICULTURAL AND FOREST METEOROLOGY, 2017, 233 : 171 - 182
  • [34] Machine Learning Estimates of Global Marine Nitrogen Fixation
    Tang, Weiyi
    Li, Zuchuan
    Cassar, Nicolas
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2019, 124 (03) : 717 - 730
  • [35] Improving land surface model accuracy in soil moisture simulations using parametric schemes and machine learning
    Zhao, Xi
    Miao, Chiyuan
    Hu, Jinlong
    Su, Jiajia
    JOURNAL OF HYDROLOGY, 2025, 657
  • [36] Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP land surface model
    Liu, Xing
    Chen, Fei
    Barlage, Michael
    Zhou, Guangsheng
    Niyogi, Dev
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (23) : 13953 - 13972
  • [37] Estimation of global land surface evapotranspiration and its trend using a surface energy balance constrained deep learning model
    Chen, Han
    Razaqpur, A. Ghani
    Wei, Yizhao
    Huang, Jinhui Jeanne
    Li, Han
    Mcbean, Edward
    JOURNAL OF HYDROLOGY, 2023, 627
  • [38] Integration of a Deep-Learning-Based Fire Model Into a Global Land Surface Model
    Son, Rackhun
    Stacke, Tobias
    Gayler, Veronika
    Nabel, Julia E. M. S.
    Schnur, Reiner
    Alonso, Lazaro
    Requena-Mesa, Christian
    Winkler, Alexander J.
    Hantson, Stijn
    Zaehle, Soenke
    Weber, Ulrich
    Carvalhais, Nuno
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2024, 16 (01)
  • [39] Evaluating a New Deposition Velocity Module in the Noah Land-Surface Model
    Charusombat, U.
    Niyogi, D.
    Kumar, A.
    Wang, X.
    Chen, F.
    Guenther, A.
    Turnipseed, A.
    Alapaty, K.
    BOUNDARY-LAYER METEOROLOGY, 2010, 137 (02) : 271 - 290
  • [40] Evaluating a New Deposition Velocity Module in the Noah Land-Surface Model
    U. Charusombat
    D. Niyogi
    A. Kumar
    X. Wang
    F. Chen
    A. Guenther
    A. Turnipseed
    K. Alapaty
    Boundary-Layer Meteorology, 2010, 137 : 271 - 290