Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning

被引:50
|
作者
Chaney, Nathaniel W. [1 ]
Herman, Jonathan D. [2 ]
Ek, Michael B. [3 ]
Wood, Eric F. [4 ]
机构
[1] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA
[2] UC, Dept Civil & Environm Engn, Davis, CA USA
[3] NOAA, EMC, NCEP, College Pk, MD USA
[4] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
关键词
SENSITIVITY-ANALYSIS; ETA-MODEL; LAYER; PREDICTION; MOISTURE; SCHEMES; DROUGHT; WEATHER; DATASET; IMPACT;
D O I
10.1002/2016JD024821
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of modelparameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (r(s,min)), the Zilitinkevich empirical constant (C-zil), and the bare soil evaporation exponent (fx(exp)). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.
引用
收藏
页码:13218 / 13235
页数:18
相关论文
共 50 条
  • [41] An Application of the Maximum Entropy Production Method in the WRF Noah Land Surface Model
    Jia, Chunhui
    Zhao, Ping
    Wang, Jingfeng
    Deng, Yi
    Li, Na
    Wang, Yingchun
    Miao, Shiguang
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2023, 128 (05)
  • [42] A comparison of the Noah and OSU land surface models in the ECPC seasonal forecast model
    De Haan, Laurel L.
    Kanamitsu, Masao
    JOURNAL OF HYDROMETEOROLOGY, 2007, 8 (05) : 1031 - 1048
  • [43] Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model
    Shellito, Peter J.
    Small, Eric E.
    Livneh, Ben
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2018, 22 (03) : 1649 - 1663
  • [44] Evaluation and improvement of the default soil hydraulic parameters for the Noah Land Surface Model
    Kishne, Andrea Sz.
    Yimam, Yohannes Tadesse
    Morgan, Cristine L. S.
    Dornblaser, Bright C.
    GEODERMA, 2017, 285 : 247 - 259
  • [45] Remote estimates of suspended particulate matter in global lakes using machine learning models
    Wen, Zhidan
    Wang, Qiang
    Ma, Yue
    Jacinthe, Pierre Andre
    Liu, Ge
    Li, Sijia
    Shang, Yingxin
    Tao, Hui
    Fang, Chong
    Lyu, Lili
    Zhang, Baohua
    Song, Kaishan
    INTERNATIONAL SOIL AND WATER CONSERVATION RESEARCH, 2024, 12 (01) : 200 - 216
  • [46] Exploring parameter sensitivities of the land surface using a locally coupled land-atmosphere model
    Liu, YQ
    Gupta, HV
    Sorooshian, S
    Bastidas, LA
    Shuttleworth, WJ
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D21) : D211011 - 13
  • [47] Global intercomparison of 12 land surface heat flux estimates
    Jimenez, C.
    Prigent, C.
    Mueller, B.
    Seneviratne, S. I.
    McCabe, M. F.
    Wood, E. F.
    Rossow, W. B.
    Balsamo, G.
    Betts, A. K.
    Dirmeyer, P. A.
    Fisher, J. B.
    Jung, M.
    Kanamitsu, M.
    Reichle, R. H.
    Reichstein, M.
    Rodell, M.
    Sheffield, J.
    Tu, K.
    Wang, K.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
  • [48] Forecasting land surface drought in urban environments based on machine learning model
    Chen, Junpai
    Zheng, Hao
    SUSTAINABLE CITIES AND SOCIETY, 2025, 118
  • [49] A Transformer-Based Framework for Parameter Learning of a Land Surface Hydrological Process Model
    Li, Klin
    Lu, Yutong
    REMOTE SENSING, 2023, 15 (14)
  • [50] Joint Modeling of Crop and Irrigation in the central United States Using the Noah-MP Land Surface Model
    Zhang, Zhe
    Barlage, Michael
    Chen, Fei
    Li, Yanping
    Helgason, Warren
    Xu, Xiaoyu
    Liu, Xing
    Li, Zhenhua
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (07)