Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning

被引:50
|
作者
Chaney, Nathaniel W. [1 ]
Herman, Jonathan D. [2 ]
Ek, Michael B. [3 ]
Wood, Eric F. [4 ]
机构
[1] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA
[2] UC, Dept Civil & Environm Engn, Davis, CA USA
[3] NOAA, EMC, NCEP, College Pk, MD USA
[4] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
关键词
SENSITIVITY-ANALYSIS; ETA-MODEL; LAYER; PREDICTION; MOISTURE; SCHEMES; DROUGHT; WEATHER; DATASET; IMPACT;
D O I
10.1002/2016JD024821
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of modelparameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (r(s,min)), the Zilitinkevich empirical constant (C-zil), and the bare soil evaporation exponent (fx(exp)). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.
引用
收藏
页码:13218 / 13235
页数:18
相关论文
共 50 条
  • [1] Parameter Sensitivity of the Noah-MP Land Surface Model with Dynamic Vegetation
    Arsenault, Kristi R.
    Nearing, Grey S.
    Wang, Shugong
    Yatheendradas, Soni
    Peters-Lidard, Christa D.
    JOURNAL OF HYDROMETEOROLOGY, 2018, 19 (05) : 815 - 830
  • [2] Machine Learning Accelerates Parameter Optimization and Uncertainty Assessment of a Land Surface Model
    Sawada, Yohei
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (20)
  • [3] Evaluating the JULES Land Surface Model Energy Fluxes Using FLUXNET Data
    Blyth, Eleanor
    Gash, John
    Lloyd, Amanda
    Pryor, Matthew
    Weedon, Graham P.
    Shuttleworth, Jim
    JOURNAL OF HYDROMETEOROLOGY, 2010, 11 (02) : 509 - 519
  • [4] Global Marine Isochore Estimates Using Machine Learning
    Lee, Taylor R.
    Phrampus, Benjamin J.
    Obelcz, Jeffrey
    Wood, Warren T.
    Skarke, Adam
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (18)
  • [5] Advances in land modeling of KIAPS based on the Noah Land Surface Model
    Myung-Seo Koo
    Sunghye Baek
    Kyung-Hee Seol
    Kyoungmi Cho
    Asia-Pacific Journal of Atmospheric Sciences, 2017, 53 : 361 - 373
  • [6] Global Evaluation of the Noah-MP Land Surface Model and Suggestions for Selecting Parameterization Schemes
    Li, Jianduo
    Miao, Chiyuan
    Zhang, Guo
    Fang, Yuan-Hao
    Wei Shangguan
    Niu, Guo-Yue
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2022, 127 (05)
  • [7] Advances in land modeling of KIAPS based on the Noah Land Surface Model
    Koo, Myung-Seo
    Baek, Sunghye
    Seol, Kyung-Hee
    Cho, Kyoungmi
    ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES, 2017, 53 (03) : 361 - 373
  • [8] Validation of the NOAH-OSU land surface model using surface flux measurements in Oklahoma
    Sridhar, V
    Elliott, RL
    Chen, F
    Brotzge, JA
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D20) : ACL3 - 1
  • [9] Analysis of parameter sensitivity on surface heat exchange in the Noah land surface model at a temperate desert steppe site in China
    Guo Zhang
    Guangsheng Zhou
    Fei Chen
    Journal of Meteorological Research, 2017, 31 : 1167 - 1182
  • [10] Analysis of Parameter Sensitivity on Surface Heat Exchange in the Noah Land Surface Model at a Temperate Desert Steppe Site in China
    Guo ZHANG
    Guangsheng ZHOU
    Fei CHEN
    JournalofMeteorologicalResearch, 2017, 31 (06) : 1167 - 1182