Compact Model Parameter Extraction using Bayesian Machine Learning

被引:1
|
作者
Bhat, Sachin [1 ]
Kulkarni, Sourabh [1 ]
Moritz, Csaba Andras [1 ]
机构
[1] Univ Massachusetts Amherst, Elect & Comp Engn Dept, Amherst, MA 01003 USA
关键词
Compact model; Parameter extraction; Bayesian optimization; Machine Learning;
D O I
10.1109/ISVLSI59464.2023.10238563
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Compact models are integral part of large-scale integrated circuit simulations and validation of new technologies. With technology scaling, however, compact models have become complex with lots of parameters involved. Hence, parameter extraction for new device technology is rather challenging. In this paper, we propose a probabilistic approach to compact model parameter extraction. We devise a Bayesian optimization technique which is specifically tailored for efficient extraction of BSIM-CMG parameters for fitting nanowire junctionless transistors and 14nm FinFETs. The Bayesian optimization based extraction results show excellent fit to drain current data, with 6.5% normalized root-mean-square error for nanowire junctionless transistors. For a 14nm FinFET, the technique achieves 6.3% and 1.5% for drain current and capacitance data, respectively. This compares favourably to current tools available as well and improves on current tools available including industrial ones.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 50 条
  • [1] Remembrance of Transistors Past: Compact Model Parameter Extraction Using Bayesian Inference and Incomplete New Measurements
    Yu, Li
    Saxena, Sharad
    Hess, Christopher
    Elfadel, Abe
    Antoniadis, Dimitri
    Boning, Duane
    2014 51ST ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2014,
  • [2] Compact Model Parameter Extraction Using Bayesian Inference, Incomplete New Measurements, and Optimal Bias Selection
    Yu, Li
    Saxena, Sharad
    Hess, Christopher
    Elfadel, Ibrahim M.
    Antoniadis, Dimitri A.
    Boning, Duane S.
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2016, 35 (07) : 1138 - 1150
  • [3] Training Free Parameter Extraction for Compact Device Models using Sequential Bayesian Optimization
    Maheshwari, Om
    Singh, Aishwarya
    Mohapatra, Nihar Ranjan
    8TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM 2024, 2024, : 607 - 609
  • [4] A machine learning approach to Bayesian parameter estimation
    Nolan, Samuel
    Smerzi, Augusto
    Pezze, Luca
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [5] A machine learning approach to Bayesian parameter estimation
    Samuel Nolan
    Augusto Smerzi
    Luca Pezzè
    npj Quantum Information, 7
  • [6] Feature identification for parameter extraction and defect detection using machine learning
    Guo, Y.
    Pahlavani, H.
    Khachaturiants, A.
    Elsayed, K.
    van de Laar, J.
    Simons, E.
    Saikumar, N.
    Sadeghian, H.
    METROLOGY, INSPECTION, AND PROCESS CONTROL XXXVIII, 2024, 12955
  • [7] Graph-Based Compact Model (GCM) for Efficient Transistor Parameter Extraction: A Machine Learning Approach on 12 nm FinFETs
    Yang, Ziyao
    Gaidhane, Amol D.
    Anderson, Kassandra
    Workman, Glenn
    Cao, Yu
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (01) : 254 - 262
  • [8] Probabilistic Tsunami Heights Model using Bayesian Machine Learning
    Song, Min-Jong
    Cho, Yong-Sik
    JOURNAL OF COASTAL RESEARCH, 2020, : 1291 - 1296
  • [9] Parameter extraction method using genetic algorithms for an improved OTFT compact model
    Moreno, P.
    Picos, R.
    Roca, M.
    Garcia-Moreno, E.
    Inilguez, B.
    Estrada, M.
    2007 SPANISH CONFERENCE ON ELECTRON DEVICES, PROCEEDINGS, 2007, : 64 - +
  • [10] Statistical compact model parameter extraction strategy for intrinsic parameter fluctuation
    Cheng, B.
    Roy, S.
    Asenov, A.
    SISPAD 2007: SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES 2007, 2007, : 301 - 304