Compact Model Parameter Extraction using Bayesian Machine Learning

被引:1
|
作者
Bhat, Sachin [1 ]
Kulkarni, Sourabh [1 ]
Moritz, Csaba Andras [1 ]
机构
[1] Univ Massachusetts Amherst, Elect & Comp Engn Dept, Amherst, MA 01003 USA
关键词
Compact model; Parameter extraction; Bayesian optimization; Machine Learning;
D O I
10.1109/ISVLSI59464.2023.10238563
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Compact models are integral part of large-scale integrated circuit simulations and validation of new technologies. With technology scaling, however, compact models have become complex with lots of parameters involved. Hence, parameter extraction for new device technology is rather challenging. In this paper, we propose a probabilistic approach to compact model parameter extraction. We devise a Bayesian optimization technique which is specifically tailored for efficient extraction of BSIM-CMG parameters for fitting nanowire junctionless transistors and 14nm FinFETs. The Bayesian optimization based extraction results show excellent fit to drain current data, with 6.5% normalized root-mean-square error for nanowire junctionless transistors. For a 14nm FinFET, the technique achieves 6.3% and 1.5% for drain current and capacitance data, respectively. This compares favourably to current tools available as well and improves on current tools available including industrial ones.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 50 条
  • [31] Global Parameter Extraction for a Multi-gate MOSFETs Compact Model
    Yao, Shijing
    Morshed, Tanvir H.
    Lu, Darsen D.
    Venugopalan, Sriramkumar
    Xiong, Weize
    Cleavelin, C. R.
    Niknejad, Ali M.
    Hu, Chenming
    2010 INTERNATIONAL CONFERENCE ON MICROELECTRONIC TEST STRUCTURES, 23RD IEEE ICMTS CONFERENCE PROCEEDINGS, 2010, : 194 - 197
  • [32] A partially-depleted SOI compact model - Formulation and parameter extraction
    Fung, SKH
    Wagner, L
    Sherony, M
    Zamdmer, N
    Sleight, J
    Michel, M
    Leobandung, E
    Lo, SH
    Chen, TC
    Assaderaghi, F
    2000 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2000, : 206 - 207
  • [33] Parameter Extraction of a Solar Cell Compact Model usign Genetic Algorithms
    Moldovan, Nicolai
    Picos, Rodrigo
    Garcia-Morenoz, Eugenio
    PROCEEDINGS OF THE 2009 SPANISH CONFERENCE ON ELECTRON DEVICES, 2009, : 379 - +
  • [34] Compact Model Parameter Extraction via Derivative-Free Optimization
    Martinez, Rafael Perez
    Iwamoto, Masaya
    Woo, Kelly
    Bian, Zhengliang
    Tinti, Roberto
    Boyd, Stephen
    Chowdhury, Srabanti
    IEEE ACCESS, 2024, 12 : 123224 - 123235
  • [35] Bone Cancer Detection Using Feature Extraction Based Machine Learning Model
    Sharma, Ashish
    Yadav, Dhirendra P.
    Garg, Hitendra
    Kumar, Mukesh
    Sharma, Bhisham
    Koundal, Deepika
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [36] Parameter learning but not structure learning: A Bayesian network model of constraints on early perceptual learning
    Michel, Melchi M.
    Jacobs, Robert A.
    JOURNAL OF VISION, 2007, 7 (01):
  • [37] FinFET Compact Modeling and Parameter Extraction
    Chevillon, Nicolas
    Tang, Mingchun
    Pregaldiny, Fabien
    Lallement, Christophe
    Madec, Morgan
    MIXDES 2009: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2009, : 55 - 60
  • [38] Bayesian Machine Learning
    Wu, Wei
    Nagarajan, Srikantan
    Chen, Zhe
    IEEE SIGNAL PROCESSING MAGAZINE, 2016, 33 (01) : 14 - 36
  • [39] Data-Driven SOA Parameter Discovery and Optimization Using Bayesian Machine Learning With a Parzen Estimator Surrogate
    Kraemer, Rafael
    Duzgol, Onur
    Li, Shi
    Calabretta, Nicola
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (02) : 721 - 731
  • [40] Prediction of tidal currents using Bayesian machine learning
    Sarkar, Dripta
    Osborne, Michael A.
    Adcock, Thomas A. A.
    OCEAN ENGINEERING, 2018, 158 : 221 - 231