Compact Model Parameter Extraction using Bayesian Machine Learning

被引:1
|
作者
Bhat, Sachin [1 ]
Kulkarni, Sourabh [1 ]
Moritz, Csaba Andras [1 ]
机构
[1] Univ Massachusetts Amherst, Elect & Comp Engn Dept, Amherst, MA 01003 USA
关键词
Compact model; Parameter extraction; Bayesian optimization; Machine Learning;
D O I
10.1109/ISVLSI59464.2023.10238563
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Compact models are integral part of large-scale integrated circuit simulations and validation of new technologies. With technology scaling, however, compact models have become complex with lots of parameters involved. Hence, parameter extraction for new device technology is rather challenging. In this paper, we propose a probabilistic approach to compact model parameter extraction. We devise a Bayesian optimization technique which is specifically tailored for efficient extraction of BSIM-CMG parameters for fitting nanowire junctionless transistors and 14nm FinFETs. The Bayesian optimization based extraction results show excellent fit to drain current data, with 6.5% normalized root-mean-square error for nanowire junctionless transistors. For a 14nm FinFET, the technique achieves 6.3% and 1.5% for drain current and capacitance data, respectively. This compares favourably to current tools available as well and improves on current tools available including industrial ones.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 50 条
  • [21] Utilizing Differential Evolution for an Automated Compact Model Parameter Extraction
    Huppmann, Marc
    Pieper, Klaus-Willi
    Buzo, Andi
    Maurer, Linus
    Pelz, Georg
    2021 INTERNATIONAL SEMICONDUCTOR CONFERENCE (CAS), 2021, : 231 - 234
  • [22] Transit time parameter extraction for the HICUM bipolar compact model
    Ardouin, B
    Zimmer, T
    Berger, D
    Celi, D
    Mnif, H
    Burdeau, T
    Fouillat, P
    PROCEEDINGS OF THE 2001 BIPOLAR/BICMOS CIRCUITS AND TECHNOLOGY MEETING, 2001, : 106 - 109
  • [23] A highly efficient statistical compact model parameter extraction scheme
    Takeuchi, K
    Hane, M
    SISPAD: 2005 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 2005, : 135 - 138
  • [24] Statistical compact model parameter extraction by direct fitting to variations
    Takeuchi, Kiyoshi
    Hane, Masami
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (06) : 1487 - 1493
  • [25] Parameter Extraction Method Using Hybrid Artificial Bee Colony Algorithm for an OFET Compact Model
    Akkan, Nihat
    Altun, Mustafa
    Sedef, Herman
    15TH INTERNATIONAL CONFERENCE ON SYNTHESIS, MODELING, ANALYSIS AND SIMULATION METHODS AND APPLICATIONS TO CIRCUIT DESIGN (SMACD 2018), 2018, : 105 - 108
  • [26] THz-TDS Parameter Extraction via Machine Learning
    Klokkou, N.
    Gorecki, J.
    Apostolopoulos, V
    2021 46TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 2021,
  • [27] Estimate of stochastic model parameter of exchange rate using machine learning techniques
    Mostafa, El Hachloufi
    Hamza, Faris
    Mohammed, El Haddad
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2019, 60 (04) : 326 - 332
  • [28] Improving Bayesian Network Parameter Learning using Constraints
    de Campos, Cassio P.
    Ji, Qiang
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3791 - 3794
  • [29] Bayesian network parameter learning using fuzzy constraints
    Ru, Xinxin
    Gao, Xiaoguang
    Wang, Zidong
    Wang, Yangyang
    Liu, Xiaohan
    NEUROCOMPUTING, 2023, 544
  • [30] Application of the Genetic Algorithm to compact MOSFET model development and parameter extraction
    Cai, X
    Wang, H
    Gu, X
    Gildenblat, G
    Bendix, P
    NANOTECH 2003, VOL 2, 2003, : 314 - 317