Compact Model Parameter Extraction using Bayesian Machine Learning

被引:1
|
作者
Bhat, Sachin [1 ]
Kulkarni, Sourabh [1 ]
Moritz, Csaba Andras [1 ]
机构
[1] Univ Massachusetts Amherst, Elect & Comp Engn Dept, Amherst, MA 01003 USA
关键词
Compact model; Parameter extraction; Bayesian optimization; Machine Learning;
D O I
10.1109/ISVLSI59464.2023.10238563
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Compact models are integral part of large-scale integrated circuit simulations and validation of new technologies. With technology scaling, however, compact models have become complex with lots of parameters involved. Hence, parameter extraction for new device technology is rather challenging. In this paper, we propose a probabilistic approach to compact model parameter extraction. We devise a Bayesian optimization technique which is specifically tailored for efficient extraction of BSIM-CMG parameters for fitting nanowire junctionless transistors and 14nm FinFETs. The Bayesian optimization based extraction results show excellent fit to drain current data, with 6.5% normalized root-mean-square error for nanowire junctionless transistors. For a 14nm FinFET, the technique achieves 6.3% and 1.5% for drain current and capacitance data, respectively. This compares favourably to current tools available as well and improves on current tools available including industrial ones.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 50 条
  • [41] Stochastic stratigraphic modeling using Bayesian machine learning
    Wei, Xingxing
    Wang, Hui
    ENGINEERING GEOLOGY, 2022, 307
  • [42] Machine Learning of Bayesian Networks Using Constraint Programming
    van Beek, Peter
    Hoffmann, Hella-Franziska
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, CP 2015, 2015, 9255 : 429 - 445
  • [43] Bayesian parameter learning with an application
    Karimnezhad, Ali
    Moradi, Fahimeh
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2016, 74 (01): : 61 - 74
  • [44] Parameter tuning of EV drivers' charging behavioural model using machine learning techniques
    Fotouhi, Zohreh
    Narimani, Hamed
    Hashemi, Massoud Reza
    TRANSPORTMETRICA B-TRANSPORT DYNAMICS, 2023, 11 (01)
  • [45] Parameter learning in hybrid Bayesian networks using prior knowledge
    Perez-Bernabe, Inmaculada
    Fernandez, Antonio
    Rumi, Rafael
    Salmeron, Antonio
    DATA MINING AND KNOWLEDGE DISCOVERY, 2016, 30 (03) : 576 - 604
  • [46] Parameter learning in hybrid Bayesian networks using prior knowledge
    Inmaculada Pérez-Bernabé
    Antonio Fernández
    Rafael Rumí
    Antonio Salmerón
    Data Mining and Knowledge Discovery, 2016, 30 : 576 - 604
  • [47] Evaluation of crop model prediction and uncertainty using Bayesian parameter estimation and Bayesian model averaging
    Gao, Yujing
    Wallach, Daniel
    Hasegawa, Toshihiro
    Tang, Liang
    Zhang, Ruoyang
    Asseng, Senthold
    Kahveci, Tamer
    Liu, Leilei
    He, Jianqiang
    Hoogenboom, Gerrit
    AGRICULTURAL AND FOREST METEOROLOGY, 2021, 311
  • [48] Development of a literature informed Bayesian machine learning method for feature extraction and classification
    Madahian, Behrouz
    Deng, Lih Yuan
    Homayouni, Ramin
    BMC BIOINFORMATICS, 2015, 16
  • [49] Development of a literature informed Bayesian machine learning method for feature extraction and classification
    Behrouz Madahian
    Lih Yuan Deng
    Ramin Homayouni
    BMC Bioinformatics, 16
  • [50] VerilogAE: An Open Source Verilog-A Compiler for Compact Model Parameter Extraction
    Kuthe, Pascal
    Mueller, Markus
    Schroeter, Michael
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2020, 8 (08): : 1416 - 1423