Semiparametric Fractional Imputation Using Gaussian Mixture Models for Handling Multivariate Missing Data

被引:7
|
作者
Sang, Hejian [1 ]
Kim, Jae Kwang [2 ]
Lee, Danhyang [3 ]
机构
[1] Google Inc, Mountain View, CA USA
[2] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[3] Univ Alabama, Dept Informat Syst Stat & Management Sci, Tuscaloosa, AL USA
基金
美国国家科学基金会;
关键词
Item nonresponse; Robust estimation; Variance estimation; MULTIPLE-IMPUTATION; LIKELIHOOD; DISTRIBUTIONS; SELECTION; VALUES;
D O I
10.1080/01621459.2020.1796358
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Item nonresponse is frequently encountered in practice. Ignoring missing data can lose efficiency and lead to misleading inference. Fractional imputation is a frequentist approach of imputation for handling missing data. However, the parametric fractional imputation may be subject to bias under model misspecification. In this article, we propose a novel semiparametric fractional imputation (SFI) method using Gaussian mixture models. The proposed method is computationally efficient and leads to robust estimation. The proposed method is further extended to incorporate the categorical auxiliary information. The asymptotic model consistency and root n-consistency of the SFI estimator are also established. Some simulation studies are presented to check the finite sample performance of the proposed method.
引用
下载
收藏
页码:654 / 663
页数:10
相关论文
共 50 条
  • [41] EM algorithms for multivariate Gaussian mixture models with truncated and censored data
    Lee, Gyemin
    Scott, Clayton
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (09) : 2816 - 2829
  • [42] On multiple imputation through finite Gaussian mixture models
    Di Zio, Marco
    Guarnera, Ugo
    DATA ANALYSIS, MACHINE LEARNING AND APPLICATIONS, 2008, : 111 - +
  • [43] Handling missing data in multivariate time series using a vector autoregressive model-imputation (VAR-IM) algorithm
    Bashir, Faraj
    Wei, Hua-Liang
    NEUROCOMPUTING, 2018, 276 : 23 - 30
  • [44] Multivariate Time Series Missing Data Imputation Using Recurrent Denoising Autoencoder
    Zhang, Jianye
    Yin, Peng
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 760 - 764
  • [45] Missing Value Analysis of Numerical Data using Fractional Hot Deck Imputation
    Christopher, Samuel Zico
    Siswantining, Titin
    Sarwinda, Devvi
    Bustaman, Alhadi
    2019 3RD INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS 2019), 2019,
  • [46] A revisit of semiparametric regression models with missing data
    Yu, Menggang
    Nan, Bin
    STATISTICA SINICA, 2006, 16 (04) : 1193 - 1212
  • [47] Multiple Imputation for Missing Values through Conditional Semiparametric Odds Ratio Models
    Chen, Hua Yun
    Xie, Hui
    Qian, Yi
    BIOMETRICS, 2011, 67 (03) : 799 - 809
  • [48] Handling Missing Data in a Duloxetine Population Pharmacokinetic/Pharmacodynamic Model – Imputation Methods and Selection Models
    Eunice Yuen
    Ivelina Gueorguieva
    Leon Aarons
    Pharmaceutical Research, 2014, 31 : 2829 - 2843
  • [49] Handling Missing Data in a Duloxetine Population Pharmacokinetic/Pharmacodynamic Model - Imputation Methods and Selection Models
    Yuen, Eunice
    Gueorguieva, Ivelina
    Aarons, Leon
    PHARMACEUTICAL RESEARCH, 2014, 31 (10) : 2829 - 2843
  • [50] Mixture models of missing data
    Rudas, T
    QUALITY & QUANTITY, 2005, 39 (01) : 19 - 36