Semiparametric Fractional Imputation Using Gaussian Mixture Models for Handling Multivariate Missing Data

被引:7
|
作者
Sang, Hejian [1 ]
Kim, Jae Kwang [2 ]
Lee, Danhyang [3 ]
机构
[1] Google Inc, Mountain View, CA USA
[2] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[3] Univ Alabama, Dept Informat Syst Stat & Management Sci, Tuscaloosa, AL USA
基金
美国国家科学基金会;
关键词
Item nonresponse; Robust estimation; Variance estimation; MULTIPLE-IMPUTATION; LIKELIHOOD; DISTRIBUTIONS; SELECTION; VALUES;
D O I
10.1080/01621459.2020.1796358
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Item nonresponse is frequently encountered in practice. Ignoring missing data can lose efficiency and lead to misleading inference. Fractional imputation is a frequentist approach of imputation for handling missing data. However, the parametric fractional imputation may be subject to bias under model misspecification. In this article, we propose a novel semiparametric fractional imputation (SFI) method using Gaussian mixture models. The proposed method is computationally efficient and leads to robust estimation. The proposed method is further extended to incorporate the categorical auxiliary information. The asymptotic model consistency and root n-consistency of the SFI estimator are also established. Some simulation studies are presented to check the finite sample performance of the proposed method.
引用
下载
收藏
页码:654 / 663
页数:10
相关论文
共 50 条
  • [31] Gaussian mixture clustering and imputation of microarray data
    Ouyang, M
    Welsh, WJ
    Georgopoulos, P
    BIOINFORMATICS, 2004, 20 (06) : 917 - 923
  • [32] Adaptive Missing Data Imputation with Incremental Neuro-Fuzzy Gaussian Mixture Network (INFGMN)
    Mazzutti, Tiago
    Roisenberg, Mauro
    de Freitas Filho, Paulo Jose
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 713 - 720
  • [33] Estimation of missing LSF parameters using Gaussian Mixture Models
    Martin, R
    Hoelper, C
    Wittke, I
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 729 - 732
  • [34] Handling missing data in nursing research with multiple imputation
    Kneipp, SM
    McIntosh, M
    NURSING RESEARCH, 2001, 50 (06) : 384 - 389
  • [35] Multiple Imputation A Flexible Tool for Handling Missing Data
    Li, Peng
    Stuart, Elizabeth A.
    Allison, David B.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2015, 314 (18): : 1966 - 1967
  • [36] Sleep spindle detection using multivariate Gaussian mixture models
    Patti, Chanakya Reddy
    Penzel, Thomas
    Cvetkovic, Dean
    JOURNAL OF SLEEP RESEARCH, 2018, 27 (04)
  • [37] Method of missing data imputation for multivariate time series
    Li Z.
    Zhang F.
    Wang Y.
    Tao Q.
    Li C.
    2018, Chinese Institute of Electronics (40): : 225 - 230
  • [38] Missing data imputation using mixture factor analysis for building electric load data
    Jeong, Dongyeon
    Park, Chiwoo
    Ko, Young Myoung
    APPLIED ENERGY, 2021, 304
  • [39] Vector Autoregressive-Moving Average Imputation Algorithm for Handling Missing Data in Multivariate Time Series
    Sumertajaya, I Made
    Rohaeti, Embay
    Wigena, Aji Hamim
    Sadik, Kusman
    IAENG International Journal of Computer Science, 2023, 50 (02)
  • [40] Missing Value Imputation Based on Gaussian Mixture Model for the Internet of Things
    Yan, Xiaobo
    Xiong, Weiqing
    Hu, Liang
    Wang, Feng
    Zhao, Kuo
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015