Semiparametric Fractional Imputation Using Gaussian Mixture Models for Handling Multivariate Missing Data

被引:7
|
作者
Sang, Hejian [1 ]
Kim, Jae Kwang [2 ]
Lee, Danhyang [3 ]
机构
[1] Google Inc, Mountain View, CA USA
[2] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[3] Univ Alabama, Dept Informat Syst Stat & Management Sci, Tuscaloosa, AL USA
基金
美国国家科学基金会;
关键词
Item nonresponse; Robust estimation; Variance estimation; MULTIPLE-IMPUTATION; LIKELIHOOD; DISTRIBUTIONS; SELECTION; VALUES;
D O I
10.1080/01621459.2020.1796358
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Item nonresponse is frequently encountered in practice. Ignoring missing data can lose efficiency and lead to misleading inference. Fractional imputation is a frequentist approach of imputation for handling missing data. However, the parametric fractional imputation may be subject to bias under model misspecification. In this article, we propose a novel semiparametric fractional imputation (SFI) method using Gaussian mixture models. The proposed method is computationally efficient and leads to robust estimation. The proposed method is further extended to incorporate the categorical auxiliary information. The asymptotic model consistency and root n-consistency of the SFI estimator are also established. Some simulation studies are presented to check the finite sample performance of the proposed method.
引用
下载
收藏
页码:654 / 663
页数:10
相关论文
共 50 条
  • [21] A genetic algorithm for multivariate missing data imputation
    Carlos Figueroa-Garcia, Juan
    Neruda, Roman
    Hernandez-Perez, German
    INFORMATION SCIENCES, 2023, 619 : 947 - 967
  • [22] Multiple imputation for handling missing outcome data in randomized trials involving a mixture of independent and paired data
    Sullivan, Thomas R.
    Yelland, Lisa N.
    Moreno-Betancur, Margarita
    Lee, Katherine J.
    STATISTICS IN MEDICINE, 2021, 40 (27) : 6008 - 6020
  • [23] Imputation through finite Gaussian mixture models
    Di Zio, Marco
    Guarnera, Ugo
    Luzi, Orietta
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (11) : 5305 - 5316
  • [24] Salvaging Data Records with Missing Data: Data Imputation using the Multivariate t Distribution
    Hooke, Melissa
    Mrozinski, Joseph
    DiNicola, Michael
    2021 IEEE AEROSPACE CONFERENCE (AEROCONF 2021), 2021,
  • [25] Estimation in semiparametric models with missing data
    Chen, Song Xi
    Van Keilegom, Ingrid
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (04) : 785 - 805
  • [26] Estimation in semiparametric models with missing data
    Song Xi Chen
    Ingrid Van Keilegom
    Annals of the Institute of Statistical Mathematics, 2013, 65 : 785 - 805
  • [27] Parametric fractional imputation for nonignorable missing data
    Kim, Ji Young
    Kim, Jae Kwang
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (03) : 291 - 303
  • [28] Parametric fractional imputation for nonignorable missing data
    Ji Young Kim
    Jae Kwang Kim
    Journal of the Korean Statistical Society, 2012, 41 : 291 - 303
  • [29] Imputation and missing indicators for handling missing data in the development and deployment of clinical prediction models: A simulation study
    Sisk, Rose
    Sperrin, Matthew
    Peek, Niels
    van Smeden, Maarten
    Martin, Glen Philip
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2023, 32 (08) : 1461 - 1477
  • [30] Parametric fractional imputation for missing data analysis
    Kim, Jae Kwang
    BIOMETRIKA, 2011, 98 (01) : 119 - 132