Multivariate Time Series Missing Data Imputation Using Recurrent Denoising Autoencoder

被引:0
|
作者
Zhang, Jianye [1 ,2 ]
Yin, Peng [1 ]
机构
[1] Chinese Acad Sci, Joint Engn Res Ctr Hlth Big Data Intelligent Anal, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[2] Tsinghua Univ, Shenzhen Int Grad Sch, Dept Comp Sci & Technol, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
missing data; multivariate; time series; denoising autoencoder;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This paper presents a novel method for imputing missing data of multivariate time series by adapting the Long Short Term-Memory(LSTM) and Denoising Autoencoder(DAE). Missing data are ubiquitous in many domains; proper imputation methods can improve performance on many tasks. Our method focus on multivariate time series, applying bidirectional LSTM to learn temporal information and DAE to learn correlation between variables, and we combine these two models by using LSTM as the encoder component of DAE. Several real-world datasets, including electroencephalogram(EEG), electromyogram(EMG) and electronic health records(EHRs), are extracted to test the performance of our method. Through simulation studies, we compare the proposed recurrent denoising autoencoder with several baseline imputation methods and demonstrate its effectiveness in both missing data estimation and label prediction after imputation.
引用
收藏
页码:760 / 764
页数:5
相关论文
共 50 条
  • [1] Multivariate Time Series as Images: Imputation Using Convolutional Denoising Autoencoder
    Al Safi, Abdullah
    Beyer, Christian
    Unnikrishnan, Vishnu
    Spiliopoulou, Myra
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS XVIII, IDA 2020, 2020, 12080 : 1 - 13
  • [2] Recurrent Imputation for Multivariate Time Series with Missing Values
    Suo, Qiuling
    Yao, Liuyi
    Xun, Guangxu
    Sun, Jianhui
    Zhang, Aidong
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2019, : 562 - 564
  • [3] Gap imputation in related multivariate time series through recurrent neural network-based denoising autoencoder
    Alonso, Serafin
    Moran, Antonio
    Perez, Daniel
    Prada, Miguel A.
    Fuertes, Juan J.
    Dominguez, Manuel
    [J]. INTEGRATED COMPUTER-AIDED ENGINEERING, 2024, 31 (02) : 157 - 172
  • [4] Imputation of Missing Value Using Dynamic Bayesian Network for Multivariate Time Series Data
    Susanti, Steffi Pauli
    Azizah, Fazat Nur
    [J]. PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON DATA AND SOFTWARE ENGINEERING (ICODSE), 2017,
  • [5] Missing data imputation using an iterative denoising autoencoder (IDAE) for dissolved gas analysis
    Seo, Boseong
    Shin, Jaekyung
    Kim, Taejin
    Youn, Byeng D.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2022, 212
  • [6] Data Imputation for Multivariate Time Series Sensor Data With Large Gaps of Missing Data
    Wu, Rui
    Hamshaw, Scott D.
    Yang, Lei
    Kincaid, Dustin W.
    Etheridge, Randall
    Ghasemkhani, Amir
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (11) : 10671 - 10683
  • [7] MISSING DATA IMPUTATION FOR HEALTH CARE BIG DATA USING DENOISING AUTOENCODER WITH GENERATIVE ADVERSARIAL NETWORK
    Zhang, Yinbing
    [J]. SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2024, 25 (05): : 3850 - 3857
  • [8] Missing Data Imputation for Multivariate Time series in Industrial IoT: A Federated Learning Approach
    Gkillas, Alexandros
    Lalos, Aris S.
    [J]. 2022 IEEE 20TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2022, : 87 - 94
  • [9] Establishing strong imputation performance of a denoising autoencoder in a wide range of missing data problems
    Abiri, Najmeh
    Linse, Bjorn
    Eden, Patrik
    Ohlsson, Mattias
    [J]. NEUROCOMPUTING, 2019, 365 : 137 - 146
  • [10] Selective Imputation for Multivariate Time Series Datasets With Missing Values
    Blazquez-Garcia, Anehd
    Wickstrom, Kristoffer
    Yu, Shujian
    Mikalsen, Karl Oyvind
    Boubekki, Ahcene
    Conde, Angel
    Mori, Usue
    Jenssen, Robert
    Lozano, Jose A.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (09) : 9490 - 9501