Missing Value Analysis of Numerical Data using Fractional Hot Deck Imputation

被引:9
|
作者
Christopher, Samuel Zico [1 ]
Siswantining, Titin [1 ]
Sarwinda, Devvi [1 ]
Bustaman, Alhadi [1 ]
机构
[1] Univ Indonesia, Dept Math, Depok, Indonesia
关键词
Fractional imputation; hot deck imputation; missing value;
D O I
10.1109/icicos48119.2019.8982412
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One of the solutions of missing value in a survey is imputation. Imputation is a method to replace the missing value with the imputed value from a particular technique, such as mean value, median value, etc. This paper specifically discusses a technique that fuses fractional imputation technique and hot-deck imputation technique. Fractional imputation is popular because this imputation tends to produce lower standard error compared to other methods. Unfortunately, fractional imputation tends to extend the number of observations. Because of the observation extension, sampling becomes a solution to produce less observation. Sampling limits the numbers of imputed values (donor) in the observations by using hot deck imputation nature. The imputation that fuses fractional imputation and hot-deck imputation is known as the fractional hot deck. This paper presents three things about fractional hot deck imputation, first, it shows that the result of fractional hot deck imputation produces fewer donor than fractional imputation, but still has a similar property to fractional imputation that presented in linear regression; Second, it presents an additional information about it's effect on modifying it's k-value in discretization step and the standard error of regression; Third, it presents the comparison of standard errors with fractional imputation, listwise deletion, mean imputation, and median imputation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Fractional hot deck imputation
    Kim, JK
    Fuller, W
    [J]. BIOMETRIKA, 2004, 91 (03) : 559 - 578
  • [2] Hot Deck Multiple Imputation for Handling Missing Accelerometer Data
    Butera, Nicole M.
    Li, Siying
    Evenson, Kelly R.
    Di, Chongzhi
    Buchner, David M.
    LaMonte, Michael J.
    LaCroix, Andrea Z.
    Herring, Amy
    [J]. STATISTICS IN BIOSCIENCES, 2019, 11 (02) : 422 - 448
  • [3] Using the Fractional Imputation Methodology to Evaluate Variance due to Hot Deck Imputation in Survey Data
    Perez, Adriana
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2007, 6 (01) : 248 - 257
  • [4] Hot Deck Multiple Imputation for Handling Missing Accelerometer Data
    Nicole M. Butera
    Siying Li
    Kelly R. Evenson
    Chongzhi Di
    David M. Buchner
    Michael J. LaMonte
    Andrea Z. LaCroix
    Amy Herring
    [J]. Statistics in Biosciences, 2019, 11 : 422 - 448
  • [5] DATA-ANALYSIS USING HOT DECK MULTIPLE IMPUTATION
    REILLY, M
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1993, 42 (03) : 307 - 313
  • [6] Regression fractional hot deck imputation
    Kim, Jae Kwang
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2007, 36 (03) : 423 - 434
  • [7] A Comparison of Hot Deck Imputation and Substitution Methods in The Estimation of Missing Data
    Yesilova, Abdullah
    Kaya, Yilmaz
    Almali, M. Nuri
    [J]. GAZI UNIVERSITY JOURNAL OF SCIENCE, 2011, 24 (01): : 69 - 75
  • [8] Parametric fractional imputation for missing data analysis
    Kim, Jae Kwang
    [J]. BIOMETRIKA, 2011, 98 (01) : 119 - 132
  • [9] A global Water Quality Index and hot-deck imputation of missing data
    Srebotnjak, Tanja
    Carr, Genevieve
    de Sherbinin, Alexander
    Rickwood, Carrie
    [J]. ECOLOGICAL INDICATORS, 2012, 17 : 108 - 119
  • [10] On Limiting Donor Usage for Imputation of Missing Data via Hot Deck Methods
    Bankhofer, Udo
    Joenssen, Dieter William
    [J]. DATA ANALYSIS, MACHINE LEARNING AND KNOWLEDGE DISCOVERY, 2014, : 3 - 11