Open Knowledge Graphs Canonicalization using Variational Autoencoders

被引:0
|
作者
Dash, Sarthak [1 ]
Rossiello, Gaetano [1 ]
Bagchi, Sugato [1 ]
Mihindukulasooriya, Nandana [1 ]
Gliozzo, Alfio [1 ]
机构
[1] Thomas J Watson Res Ctr, IBM Res AI, Yorktown Hts, NY 10598 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Noun phrases and Relation phrases in open knowledge graphs are not canonicalized, leading to an explosion of redundant and ambiguous subject-relation-object triples. Existing approaches to solve this problem take a two-step approach. First, they generate embedding representations for both noun and relation phrases, then a clustering algorithm is used to group them using the embeddings as features. In this work, we propose Canonicalizing Using Variational Autoencoders (CUVA)1, a joint model to learn both embeddings and cluster assignments in an end-to-end approach, which leads to a better vector representation for the noun and relation phrases. Our evaluation over multiple benchmarks shows that CUVA outperforms the existing state-of-the-art approaches. Moreover, we introduce CANONICNELL, a novel dataset to evaluate entity canonicalization systems.
引用
收藏
页码:10379 / 10394
页数:16
相关论文
共 50 条
  • [21] Modeling and Transforming Speech using Variational Autoencoders
    Blaauw, Merlijn
    Bonada, Jordi
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 1770 - 1774
  • [22] Modelling urban networks using Variational Autoencoders
    Kira Kempinska
    Roberto Murcio
    Applied Network Science, 4
  • [23] Classification of Arcobacter species using variational autoencoders
    Patsekin, Valery
    On, Stephen
    Sturgis, Jennifer
    Bae, Euiwon
    Rajwa, Bartek
    Patsekin, Aleksandr
    Robinson, J. Paul
    SENSING FOR AGRICULTURE AND FOOD QUALITY AND SAFETY XI, 2019, 11016
  • [24] Link Activation Using Variational Graph Autoencoders
    Jamshidiha, Saeed
    Pourahmadi, Vahid
    Mohammadi, Abbas
    Bennis, Mehdi
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (07) : 2358 - 2361
  • [25] Mixture variational autoencoders
    Jiang, Shuoran
    Chen, Yarui
    Yang, Jucheng
    Zhang, Chuanlei
    Zhao, Tingting
    PATTERN RECOGNITION LETTERS, 2019, 128 : 263 - 269
  • [26] An Introduction to Variational Autoencoders
    Kingma, Diederik P.
    Welling, Max
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2019, 12 (04): : 4 - 89
  • [27] Subitizing with Variational Autoencoders
    Wever, Rijnder
    Runia, Tom F. H.
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT III, 2019, 11131 : 617 - 627
  • [28] Mixtures of Variational Autoencoders
    Ye, Fei
    Bors, Adrian G.
    2020 TENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2020,
  • [29] Variational Laplace Autoencoders
    Park, Yookoon
    Kim, Chris Dongjoo
    Kim, Gunhee
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [30] Diffusion Variational Autoencoders
    Rey, Luis A. Perez
    Menkovski, Vlado
    Portegies, Jim
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2704 - 2710