Open Knowledge Graphs Canonicalization using Variational Autoencoders

被引:0
|
作者
Dash, Sarthak [1 ]
Rossiello, Gaetano [1 ]
Bagchi, Sugato [1 ]
Mihindukulasooriya, Nandana [1 ]
Gliozzo, Alfio [1 ]
机构
[1] Thomas J Watson Res Ctr, IBM Res AI, Yorktown Hts, NY 10598 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Noun phrases and Relation phrases in open knowledge graphs are not canonicalized, leading to an explosion of redundant and ambiguous subject-relation-object triples. Existing approaches to solve this problem take a two-step approach. First, they generate embedding representations for both noun and relation phrases, then a clustering algorithm is used to group them using the embeddings as features. In this work, we propose Canonicalizing Using Variational Autoencoders (CUVA)1, a joint model to learn both embeddings and cluster assignments in an end-to-end approach, which leads to a better vector representation for the noun and relation phrases. Our evaluation over multiple benchmarks shows that CUVA outperforms the existing state-of-the-art approaches. Moreover, we introduce CANONICNELL, a novel dataset to evaluate entity canonicalization systems.
引用
收藏
页码:10379 / 10394
页数:16
相关论文
共 50 条
  • [41] Joint Source Separation and Classification Using Variational Autoencoders
    Hizli, Caglar
    Karamatli, Ertug
    Cemgil, Ali Taylan
    Kirbiz, Serap
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [42] SPEECH PREDICTION IN SILENT VIDEOS USING VARIATIONAL AUTOENCODERS
    Yadav, Ravindra
    Sardana, Ashish
    Namboodiri, Vinay P.
    Hegde, Rajesh M.
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 7048 - 7052
  • [43] Compressing Uniform Test Suites Using Variational Autoencoders
    Reichstaller, Andre
    Knapp, Alexander
    2017 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY COMPANION (QRS-C), 2017, : 435 - 440
  • [44] Hair removal in dermoscopy images using variational autoencoders
    Bardou, Dalal
    Bouaziz, Hamida
    Lv, Laishui
    Zhang, Ting
    SKIN RESEARCH AND TECHNOLOGY, 2022, 28 (03) : 445 - 454
  • [45] Anomaly Detection of Disconnects Using SSTDR and Variational Autoencoders
    Edun, Ayobami S.
    LaFlamme, Cody
    Kingston, Samuel R.
    Furse, Cynthia M.
    Scarpulla, Michael A.
    Harley, Joel B.
    IEEE SENSORS JOURNAL, 2022, 22 (04) : 3484 - 3492
  • [46] Monaural Audio Source Separation using Variational Autoencoders
    Pandey, Laxmi
    Kumar, Anurendra
    Namboodiri, Vinay
    19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 3489 - 3493
  • [47] A VISUAL REPRESENTATION OF ENGINEERING CATALOGS USING VARIATIONAL AUTOENCODERS
    Sridhara, Saketh
    Suresh, Krishnan
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 3A, 2023,
  • [48] Seismic labeled data expansion using variational autoencoders
    Li, Kunhong
    Chen, Song
    Hu, Guangmin
    ARTIFICIAL INTELLIGENCE IN GEOSCIENCES, 2020, 1 : 24 - 30
  • [49] Generating NLFM Radar Waveforms using Variational Autoencoders
    Charlish, Alexander
    Schwalm, Carolin
    2022 IEEE RADAR CONFERENCE (RADARCONF'22), 2022,
  • [50] CONTROLLING WEATHER FIELD SYNTHESIS USING VARIATIONAL AUTOENCODERS
    Oliveira, Dario A. B.
    Diaz, Jorge G.
    Zadrozny, Bianca
    Watson, Campbell D.
    Zhu, Xiao Xiang
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5027 - 5030