Open Knowledge Graphs Canonicalization using Variational Autoencoders

被引:0
|
作者
Dash, Sarthak [1 ]
Rossiello, Gaetano [1 ]
Bagchi, Sugato [1 ]
Mihindukulasooriya, Nandana [1 ]
Gliozzo, Alfio [1 ]
机构
[1] Thomas J Watson Res Ctr, IBM Res AI, Yorktown Hts, NY 10598 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Noun phrases and Relation phrases in open knowledge graphs are not canonicalized, leading to an explosion of redundant and ambiguous subject-relation-object triples. Existing approaches to solve this problem take a two-step approach. First, they generate embedding representations for both noun and relation phrases, then a clustering algorithm is used to group them using the embeddings as features. In this work, we propose Canonicalizing Using Variational Autoencoders (CUVA)1, a joint model to learn both embeddings and cluster assignments in an end-to-end approach, which leads to a better vector representation for the noun and relation phrases. Our evaluation over multiple benchmarks shows that CUVA outperforms the existing state-of-the-art approaches. Moreover, we introduce CANONICNELL, a novel dataset to evaluate entity canonicalization systems.
引用
收藏
页码:10379 / 10394
页数:16
相关论文
共 50 条
  • [31] Tree Variational Autoencoders
    Manduchi, Laura
    Vandenhirtz, Moritz
    Ryser, Alain
    Vogt, Julia E.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [32] Overdispersed Variational Autoencoders
    Shah, Harshil
    Barber, David
    Botev, Aleksandar
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 1109 - 1116
  • [33] Ladder Variational Autoencoders
    Sonderby, Casper Kaae
    Raiko, Tapani
    Maaloe, Lars
    Sonderby, Soren Kaae
    Winther, Ole
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [34] Demystifying Tax Evasion Using Variational Graph Autoencoders
    Mehta, Priya
    Kumar, Sandeep
    Kumar, Ravi
    Babu, Ch Sobhan
    ELECTRONIC GOVERNMENT AND THE INFORMATION SYSTEMS PERSPECTIVE, EGOVIS 2021, 2021, 12926 : 155 - 166
  • [35] Affine Variational Autoencoders
    Bidart, Rene
    Wong, Alexander
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2019, PT I, 2019, 11662 : 461 - 472
  • [36] Clockwork Variational Autoencoders
    Saxena, Vaibhav
    Ba, Jimmy
    Hafner, Danijar
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [37] Unsupervised Speech Enhancement Using Dynamical Variational Autoencoders
    Bie, Xiaoyu
    Leglaive, Simon
    Alameda-Pineda, Xavier
    Girin, Laurent
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2022, 30 : 2993 - 3007
  • [38] Detection of Anomalous Grapevine Berries Using Variational Autoencoders
    Miranda, Miro
    Zabawa, Laura
    Kicherer, Anna
    Strothmann, Laurenz
    Rascher, Uwe
    Roscher, Ribana
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [39] Variational embedding of protein folding simulations using Gaussian mixture variational autoencoders
    Ghorbani, Mahdi
    Prasad, Samarjeet
    Klauda, Jeffery B.
    Brooks, Bernard R.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (19):
  • [40] Nonlinear system identification using modified variational autoencoders
    Paniagua, Jose L.
    Lopez, Jesus A.
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2024, 22