Nonlinear system identification using modified variational autoencoders

被引:1
|
作者
Paniagua, Jose L. [1 ]
Lopez, Jesus A. [1 ]
机构
[1] Univ Autonoma Occidente, Fac Ingn, Cali 760030, Colombia
来源
关键词
System identification; Deep learning; Generative modeling; Nonlinear dynamic systems; NEURAL-NETWORKS; ALGORITHMS;
D O I
10.1016/j.iswa.2024.200344
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research proposes a methodology for identifying nonlinear systems using input/output data and deep learning generative models. Our framework integrates Variational Autoencoders (VAE) with Nonlinear Autoregressive with exogenous input (NARX) in a unified identification structure to address overfitting in nonlinear system identification using NARX structures. Specifically, we modify a variational autoencoder by replacing the decoder module with a NARX model using the latent space information captured from the VAE encoder module as one of the exogenous inputs. Following the training phase, the decoder module can be used as a nonlinear model of the system. We evaluate the efficacy of our approach by performing open-loop prediction tests on data from four nonlinear benchmark systems: Cascaded tanks, Gas furnace, Silverbox, and Wiener- Hammerstein. The proposed VAE-NARX method reported Root Mean Squared Error (RMSE) of 8.23 x 10-3, -3 , 16.69 x 10-3, -3 , 0.002 x 10-3 -3 and 0.037 x 10-3 -3 respectively. Our results demonstrate that our proposed method achieves similar and outperforms prediction performances to standard identification techniques and can enhance the performance of traditional nonlinear system identification methods based on multi-layer perceptron models.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Bayesian Nonlinear Reduced Order Modeling Using Variational AutoEncoders
    Akkari, Nissrine
    Casenave, Fabien
    Hachem, Elie
    Ryckelynck, David
    FLUIDS, 2022, 7 (10)
  • [2] Sparse Bayesian Nonlinear System Identification Using Variational Inference
    Jacobs, William R.
    Baldacchino, Tara
    Dodd, Tony
    Anderson, Sean R.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (12) : 4172 - 4187
  • [3] Unsupervised Linear and Nonlinear Channel Equalization and Decoding Using Variational Autoencoders
    Caciularu, Avi
    Burshtein, David
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2020, 6 (03) : 1003 - 1018
  • [4] On the Use of Variational Autoencoders for Nonlinear Modal Analysis
    Simpson, Thomas
    Tsialiamanis, George
    Dervilis, Nikolaos
    Worden, Keith
    Chatzi, Eleni
    NONLINEAR STRUCTURES & SYSTEMS, VOL 1, 2023, : 297 - 300
  • [5] Variational Autoencoders and Nonlinear ICA: A Unifying Framework
    Khemakhem, Ilyes
    Kingma, Diederik P.
    Monti, Ricardo Pio
    Hyvarinen, Aapo
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2207 - 2216
  • [6] SPEECH DEREVERBERATION USING VARIATIONAL AUTOENCODERS
    Baby, Deepak
    Bourlard, Herve
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5784 - 5788
  • [7] Energy disaggregation using variational autoencoders
    Langevin, Antoine
    Carbonneau, Marc-Andre
    Cheriet, Mohamed
    Gagnon, Ghyslain
    ENERGY AND BUILDINGS, 2022, 254
  • [8] An Efficient Anomaly Detection System for Crowded Scenes Using Variational Autoencoders
    Xu, Ming
    Yu, Xiaosheng
    Chen, Dongyue
    Wu, Chengdong
    Jiang, Yang
    APPLIED SCIENCES-BASEL, 2019, 9 (16):
  • [9] Differentially private recommender system with variational autoencoders
    Fang, Le
    Du, Bingqian
    Wu, Chuan
    KNOWLEDGE-BASED SYSTEMS, 2022, 250
  • [10] Fault Detection Based on Variational Autoencoders for Complex Nonlinear Processes
    Wang, Kai
    Chen, Junghui
    Song, Zhihuan
    2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 1352 - 1357