Nonlinear system identification using modified variational autoencoders

被引:1
|
作者
Paniagua, Jose L. [1 ]
Lopez, Jesus A. [1 ]
机构
[1] Univ Autonoma Occidente, Fac Ingn, Cali 760030, Colombia
来源
关键词
System identification; Deep learning; Generative modeling; Nonlinear dynamic systems; NEURAL-NETWORKS; ALGORITHMS;
D O I
10.1016/j.iswa.2024.200344
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research proposes a methodology for identifying nonlinear systems using input/output data and deep learning generative models. Our framework integrates Variational Autoencoders (VAE) with Nonlinear Autoregressive with exogenous input (NARX) in a unified identification structure to address overfitting in nonlinear system identification using NARX structures. Specifically, we modify a variational autoencoder by replacing the decoder module with a NARX model using the latent space information captured from the VAE encoder module as one of the exogenous inputs. Following the training phase, the decoder module can be used as a nonlinear model of the system. We evaluate the efficacy of our approach by performing open-loop prediction tests on data from four nonlinear benchmark systems: Cascaded tanks, Gas furnace, Silverbox, and Wiener- Hammerstein. The proposed VAE-NARX method reported Root Mean Squared Error (RMSE) of 8.23 x 10-3, -3 , 16.69 x 10-3, -3 , 0.002 x 10-3 -3 and 0.037 x 10-3 -3 respectively. Our results demonstrate that our proposed method achieves similar and outperforms prediction performances to standard identification techniques and can enhance the performance of traditional nonlinear system identification methods based on multi-layer perceptron models.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Ladder Variational Autoencoders
    Sonderby, Casper Kaae
    Raiko, Tapani
    Maaloe, Lars
    Sonderby, Soren Kaae
    Winther, Ole
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [32] Recurrent Variational Autoencoders for Learning Nonlinear Generative Models in the Presence of Outliers
    Wang, Yu
    Dai, Bin
    Hua, Gang
    Aston, John
    Wipf, David
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (06) : 1615 - 1627
  • [33] Demystifying Tax Evasion Using Variational Graph Autoencoders
    Mehta, Priya
    Kumar, Sandeep
    Kumar, Ravi
    Babu, Ch Sobhan
    ELECTRONIC GOVERNMENT AND THE INFORMATION SYSTEMS PERSPECTIVE, EGOVIS 2021, 2021, 12926 : 155 - 166
  • [34] Affine Variational Autoencoders
    Bidart, Rene
    Wong, Alexander
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2019, PT I, 2019, 11662 : 461 - 472
  • [35] Clockwork Variational Autoencoders
    Saxena, Vaibhav
    Ba, Jimmy
    Hafner, Danijar
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [36] Open Knowledge Graphs Canonicalization using Variational Autoencoders
    Dash, Sarthak
    Rossiello, Gaetano
    Bagchi, Sugato
    Mihindukulasooriya, Nandana
    Gliozzo, Alfio
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 10379 - 10394
  • [37] Unsupervised Speech Enhancement Using Dynamical Variational Autoencoders
    Bie, Xiaoyu
    Leglaive, Simon
    Alameda-Pineda, Xavier
    Girin, Laurent
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2022, 30 : 2993 - 3007
  • [38] Detection of Anomalous Grapevine Berries Using Variational Autoencoders
    Miranda, Miro
    Zabawa, Laura
    Kicherer, Anna
    Strothmann, Laurenz
    Rascher, Uwe
    Roscher, Ribana
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [39] Variational embedding of protein folding simulations using Gaussian mixture variational autoencoders
    Ghorbani, Mahdi
    Prasad, Samarjeet
    Klauda, Jeffery B.
    Brooks, Bernard R.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (19):
  • [40] Joint Source Separation and Classification Using Variational Autoencoders
    Hizli, Caglar
    Karamatli, Ertug
    Cemgil, Ali Taylan
    Kirbiz, Serap
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,