Nonlinear system identification using modified variational autoencoders

被引:1
|
作者
Paniagua, Jose L. [1 ]
Lopez, Jesus A. [1 ]
机构
[1] Univ Autonoma Occidente, Fac Ingn, Cali 760030, Colombia
来源
关键词
System identification; Deep learning; Generative modeling; Nonlinear dynamic systems; NEURAL-NETWORKS; ALGORITHMS;
D O I
10.1016/j.iswa.2024.200344
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research proposes a methodology for identifying nonlinear systems using input/output data and deep learning generative models. Our framework integrates Variational Autoencoders (VAE) with Nonlinear Autoregressive with exogenous input (NARX) in a unified identification structure to address overfitting in nonlinear system identification using NARX structures. Specifically, we modify a variational autoencoder by replacing the decoder module with a NARX model using the latent space information captured from the VAE encoder module as one of the exogenous inputs. Following the training phase, the decoder module can be used as a nonlinear model of the system. We evaluate the efficacy of our approach by performing open-loop prediction tests on data from four nonlinear benchmark systems: Cascaded tanks, Gas furnace, Silverbox, and Wiener- Hammerstein. The proposed VAE-NARX method reported Root Mean Squared Error (RMSE) of 8.23 x 10-3, -3 , 16.69 x 10-3, -3 , 0.002 x 10-3 -3 and 0.037 x 10-3 -3 respectively. Our results demonstrate that our proposed method achieves similar and outperforms prediction performances to standard identification techniques and can enhance the performance of traditional nonlinear system identification methods based on multi-layer perceptron models.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Nonlinear System Identification based on Modified ANFIS
    Ewerton da Costa Martins, Jose Kleiton
    Ugulino de Araujo, Fabio Meneghetti
    ICIMCO 2015 PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL. 1, 2015, : 588 - 595
  • [22] Mixture variational autoencoders
    Jiang, Shuoran
    Chen, Yarui
    Yang, Jucheng
    Zhang, Chuanlei
    Zhao, Tingting
    PATTERN RECOGNITION LETTERS, 2019, 128 : 263 - 269
  • [23] An Introduction to Variational Autoencoders
    Kingma, Diederik P.
    Welling, Max
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2019, 12 (04): : 4 - 89
  • [24] Subitizing with Variational Autoencoders
    Wever, Rijnder
    Runia, Tom F. H.
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT III, 2019, 11131 : 617 - 627
  • [25] Mixtures of Variational Autoencoders
    Ye, Fei
    Bors, Adrian G.
    2020 TENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2020,
  • [26] Exploring the Potential of Variational Autoencoders for Modeling Nonlinear Relationships in Psychological Data
    Milano, Nicola
    Casella, Monica
    Esposito, Raffaella
    Marocco, Davide
    BEHAVIORAL SCIENCES, 2024, 14 (07)
  • [27] Variational Laplace Autoencoders
    Park, Yookoon
    Kim, Chris Dongjoo
    Kim, Gunhee
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [28] Diffusion Variational Autoencoders
    Rey, Luis A. Perez
    Menkovski, Vlado
    Portegies, Jim
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2704 - 2710
  • [29] Tree Variational Autoencoders
    Manduchi, Laura
    Vandenhirtz, Moritz
    Ryser, Alain
    Vogt, Julia E.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [30] Overdispersed Variational Autoencoders
    Shah, Harshil
    Barber, David
    Botev, Aleksandar
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 1109 - 1116