Variational Laplace Autoencoders

被引:0
|
作者
Park, Yookoon [1 ]
Kim, Chris Dongjoo [1 ]
Kim, Gunhee [1 ]
机构
[1] Seoul Natl Univ, Neural Proc Res Ctr, Seoul, South Korea
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variational autoencoders (Kingma & Welling, 2014) employ an amortized inference model to approximate the posterior of latent variables. However, such amortized variational inference faces two challenges: (1) the limited posterior expressiveness of fully-factorized Gaussian assumption and (2) the amortization error of the inference model. We present a novel approach that addresses both challenges. First, we focus on ReLU networks with Gaussian output and illustrate their connection to probabilistic PCA. Building on this observation, we derive an iterative algorithm that finds the mode of the posterior and apply full-covariance Gaussian posterior approximation centered on the mode. Subsequently, we present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models. Based on the Laplace approximation of the latent variable posterior, VLAEs enhance the expressiveness of the posterior while reducing the amortization error. Empirical results on MNIST, Omniglot, Fashion-MNIST, SVHN and CIFAR10 show that the proposed approach significantly outperforms other recent amortized or iterative methods on the ReLU networks.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Mixture variational autoencoders
    Jiang, Shuoran
    Chen, Yarui
    Yang, Jucheng
    Zhang, Chuanlei
    Zhao, Tingting
    [J]. PATTERN RECOGNITION LETTERS, 2019, 128 : 263 - 269
  • [2] An Introduction to Variational Autoencoders
    Kingma, Diederik P.
    Welling, Max
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2019, 12 (04): : 4 - 89
  • [3] Mixtures of Variational Autoencoders
    Ye, Fei
    Bors, Adrian G.
    [J]. 2020 TENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2020,
  • [4] Subitizing with Variational Autoencoders
    Wever, Rijnder
    Runia, Tom F. H.
    [J]. COMPUTER VISION - ECCV 2018 WORKSHOPS, PT III, 2019, 11131 : 617 - 627
  • [5] Diffusion Variational Autoencoders
    Rey, Luis A. Perez
    Menkovski, Vlado
    Portegies, Jim
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2704 - 2710
  • [6] Overdispersed Variational Autoencoders
    Shah, Harshil
    Barber, David
    Botev, Aleksandar
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 1109 - 1116
  • [7] Ladder Variational Autoencoders
    Sonderby, Casper Kaae
    Raiko, Tapani
    Maaloe, Lars
    Sonderby, Soren Kaae
    Winther, Ole
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [8] Tree Variational Autoencoders
    Manduchi, Laura
    Vandenhirtz, Moritz
    Ryser, Alain
    Vogt, Julia E.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [9] Clockwork Variational Autoencoders
    Saxena, Vaibhav
    Ba, Jimmy
    Hafner, Danijar
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [10] Affine Variational Autoencoders
    Bidart, Rene
    Wong, Alexander
    [J]. IMAGE ANALYSIS AND RECOGNITION, ICIAR 2019, PT I, 2019, 11662 : 461 - 472