Classification of Arcobacter species using variational autoencoders

被引:4
|
作者
Patsekin, Valery [1 ]
On, Stephen [2 ]
Sturgis, Jennifer [1 ]
Bae, Euiwon [3 ]
Rajwa, Bartek [4 ]
Patsekin, Aleksandr [5 ]
Robinson, J. Paul [1 ,6 ]
机构
[1] Lincoln Univ, Dept Basic Med Sci, Lincoln 7647, New Zealand
[2] Lincoln Univ, Dept Wine Food & Mol Biosci, Lincoln 7647, New Zealand
[3] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[4] Purdue Univ, Bindly Biosci Ctr, W Lafayette, IN 47907 USA
[5] Purdue Univ, Purdue Polytech Inst, Comp Informat Technol, W Lafayette, IN 47907 USA
[6] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA
关键词
Variational autoencoders; Arcobacter; classification; unsupervised classification; feature extraction;
D O I
10.1117/12.2521722
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Arcobacter (formerly classified as Campylobacter spp.) are curved-to helical, Gram-negative, aerobic/microaerobic bacteria increasingly recognized as human and animal pathogens. In collaboration with Lincoln and Purdue University, we report the first experimental result of laser-based classification method of bacterial colonies of these species. This technology is based on elastic light scatter (ELS) phenomena where incident laser interacts with the whole volume of the colony and generates a unique fingerprint laser pattern. Here we report a novel development and application of deep learning algorithm to classify the scatter patterns of Arcobacter species using variational autoencoders (VAE). VAE creates set of normal distributions. Each of these distributions are responsible for certain properties of the original images. We used VAE to identify features in the features space for several hundred images which includes size of the colony based on scatter size, intensity of the image, and, the number of rings within the image, and so on. Thus each sample within our image database can be coded with sets of features that facilitates fast preliminary search for similar images allowing clustering of similar patterns in feature space. In addition, such initial selection could assist in identifying non-bacterial scatter patterns (i.e. bubbles or dust spots in the agar), or doublets where two colonies are overlapping during the acquisition time thus removing non-biological artifacts prior to analysis. An interesting result was that while VAE created far more realistic synthetic images closer to the original image, a simple autonencoder resulted in better cluster separation.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Joint Source Separation and Classification Using Variational Autoencoders
    Hizli, Caglar
    Karamatli, Ertug
    Cemgil, Ali Taylan
    Kirbiz, Serap
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [2] Data augmentation using Variational Autoencoders for improvement of respiratory disease classification
    Saldanha, Jane
    Chakraborty, Shaunak
    Patil, Shruti
    Kotecha, Ketan
    Kumar, Satish
    Nayyar, Anand
    PLOS ONE, 2022, 17 (08):
  • [3] Deep Variational Autoencoders for NPC Behaviour Classification
    Soares, Everton Schumacker
    Bulitko, Vadim
    2019 IEEE CONFERENCE ON GAMES (COG), 2019,
  • [4] Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks
    Ahmad, Bilal
    Sun, Jun
    You, Qi
    Palade, Vasile
    Mao, Zhongjie
    BIOMEDICINES, 2022, 10 (02)
  • [5] Evolving Deep Convolutional Variational Autoencoders for Image Classification
    Chen, Xiangru
    Sun, Yanan
    Zhang, Mengjie
    Peng, Dezhong
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (05) : 815 - 829
  • [6] SPEECH DEREVERBERATION USING VARIATIONAL AUTOENCODERS
    Baby, Deepak
    Bourlard, Herve
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5784 - 5788
  • [7] Energy disaggregation using variational autoencoders
    Langevin, Antoine
    Carbonneau, Marc-Andre
    Cheriet, Mohamed
    Gagnon, Ghyslain
    ENERGY AND BUILDINGS, 2022, 254
  • [8] End-to-End Image Classification and Compression With Variational Autoencoders
    Chamain, Lahiru D.
    Qi, Siyu
    Ding, Zhi
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (21): : 21916 - 21931
  • [9] Species classification and novel plasmid identifications in Arcobacter cryaerophilus and Arcobacter cryaerophilus-like organisms
    Zhou, Guilan
    Wang, Min
    Wang, Hairui
    Chen, Xiaoli
    Gu, Yixin
    Shao, Zhujun
    Zhang, Jianzhong
    Zhang, Maojun
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [10] Achieving explainability for plant disease classification with disentangled variational autoencoders
    Habaragamuwa, Harshana
    Oishi, Yu
    Tanaka, Kenichi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133