Sequential local least squares imputation estimating missing value of microarray data

被引:49
|
作者
Zhang, Xiaobai [1 ]
Song, Xiaofeng [1 ]
Wang, Huinan [1 ]
Zhan, Huanping [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Biomed Engn, Nanjing 210016, Peoples R China
关键词
Missing value estimation; Imputation method; Least squares principle; Normalized root mean squared error (NRMSE); Microarray data;
D O I
10.1016/j.compbiomed.2008.08.006
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Missing values in microarray data can significantly affect subsequent analysis, thus it is important to estimate these missing values accurately. In this paper, a sequential local least squares imputation (SLLSimpute) method is proposed to solve this problem. It estimates missing values sequentially from the gene containing the fewest missing values and partially utilizes these estimated values. In addition, an automatic parameter selection algorithm, which can generate an appropriate number of neighboring genes for each target gene, is presented for parameter estimation. Experimental results confirmed that SLLSimpute method exhibited better estimation ability compared with other currently used imputation methods. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1112 / 1120
页数:9
相关论文
共 50 条
  • [1] Microarray missing value imputation by iterated local least squares
    Cai, ZP
    Heydari, M
    Lin, GH
    [J]. PROCEEDINGS OF THE 4TH ASIA-PACIFIC BIOINFORMATICS CONFERENCE, 2006, 3 : 159 - 168
  • [2] Missing value estimation for DNA microarray gene expression data: local least squares imputation
    Kim, H
    Golub, GH
    Park, H
    [J]. BIOINFORMATICS, 2005, 21 (02) : 187 - 198
  • [3] A weighted Local Least Squares Imputation method for missing value estimation in microarray gene expression data
    Ching, Wai-Ki
    Li, Limin
    Tsing, Nam-Kiu
    Tai, Ching-Wan
    Ng, Tuen-Wai
    Wong, Alice S.
    Cheng, Kwai-Wa
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2010, 4 (03) : 331 - 347
  • [4] Weighted local least squares imputation method for missing value estimation
    Ching, Wai-Ki
    Cheng, Kwai-Wa
    Li, Li-Min
    Tsing, Nam-Kiu
    Wong, Alice S.
    [J]. OPTIMIZATION AND SYSTEMS BIOLOGY, 2007, 7 : 280 - +
  • [5] Missing value estimation for DNA microarray gene expression data: local least squares imputation (vol 21, pg 187, 2005)
    Kim, H
    Golub, GH
    Park, H
    [J]. BIOINFORMATICS, 2006, 22 (11) : 1410 - 1411
  • [7] Missing Value Estimation for Microarray Data by Bayesian Principal Component Analysis and Iterative Local Least Squares
    Shi, Fuxi
    Zhang, Dan
    Chen, Jun
    Karimi, Hamid Reza
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [8] An accurate and robust missing value estimation for Microarray data: least absolute deviation imputation
    Cao, Yi
    Poh, Kim Leng
    [J]. ICMLA 2006: 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2006, : 157 - +
  • [9] A modified local least squares-based missing value estimation method in microarray gene expression data
    Bose, Shilpi
    Das, Chandra
    Gangopadhyay, Tamaghna
    Chattopadhyay, Samiran
    [J]. 2013 SECOND INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING, NETWORKING AND SECURITY (ADCONS 2013), 2013, : 18 - 23
  • [10] Missing value imputation using least squares techniques in contaminated matrices
    Garcia-Pena, Marisol
    Arciniegas-Alarcon, Sergio
    Krzanowski, Wojtek J.
    [J]. METHODSX, 2022, 9