Weighted local least squares imputation method for missing value estimation

被引:0
|
作者
Ching, Wai-Ki [1 ]
Cheng, Kwai-Wa [2 ]
Li, Li-Min [1 ]
Tsing, Nam-Kiu [1 ]
Wong, Alice S. [3 ]
机构
[1] Univ Hong Kong, Dept Math, Adv Modeling & Appl Comp Lab, Hong Kong, Hong Kong, Peoples R China
[2] Univ Texas MD Anderson Canc Ctr, Houston, TX 77030 USA
[3] Univ Hong Kong, Dept Zool, Hong Kong, Hong Kong, Peoples R China
来源
关键词
missing values; microarray data; row average method; local least squares imputation method; weighted local least squares imputation method;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Missing values often exist in the data of gene expression microarray experiments. A number of methods such as the Row Average (RA) method, KNNimpute algorithm and SVDimpute algorithm have been proposed to estimate the missing values. Recently, Kim et al. proposed a Local Least Squares Imputation (LLSI) method for estimating the missing values. In this paper, we propose a Weighted Local Least Square Imputation (WLLSI) method for missing values estimation. WLLSI allows training on the weighting and therefore can take advantage of both the LLSI method and the RA method. Numerical results on both synthetic data and real microarray data are given to demonstrate the effectiveness of our proposed method. The imputation methods are then applied to a breast cancer dataset.
引用
收藏
页码:280 / +
页数:3
相关论文
共 50 条
  • [1] A weighted Local Least Squares Imputation method for missing value estimation in microarray gene expression data
    Ching, Wai-Ki
    Li, Limin
    Tsing, Nam-Kiu
    Tai, Ching-Wan
    Ng, Tuen-Wai
    Wong, Alice S.
    Cheng, Kwai-Wa
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2010, 4 (03) : 331 - 347
  • [2] Microarray missing value imputation by iterated local least squares
    Cai, ZP
    Heydari, M
    Lin, GH
    [J]. PROCEEDINGS OF THE 4TH ASIA-PACIFIC BIOINFORMATICS CONFERENCE, 2006, 3 : 159 - 168
  • [3] Missing value estimation for DNA microarray gene expression data: local least squares imputation
    Kim, H
    Golub, GH
    Park, H
    [J]. BIOINFORMATICS, 2005, 21 (02) : 187 - 198
  • [4] Sequential local least squares imputation estimating missing value of microarray data
    Zhang, Xiaobai
    Song, Xiaofeng
    Wang, Huinan
    Zhan, Huanping
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2008, 38 (10) : 1112 - 1120
  • [5] An Iterative Locally Auto-Weighted Least Squares Method for Microarray Missing Value Estimation
    Yu, Zeng
    Li, Tianrui
    Horng, Shi-Jinn
    Pan, Yi
    Wang, Hongjun
    Jing, Yunge
    [J]. IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2017, 16 (01) : 21 - 33
  • [6] Microarray missing value imputation by bayesian principal component analysis and local least squares
    Meng, Fanchi
    Cai, Cheng
    Li, Shuqin
    [J]. ICIC Express Letters, Part B: Applications, 2013, 4 (03): : 699 - 703
  • [7] Missing value imputation using least squares techniques in contaminated matrices
    Garcia-Pena, Marisol
    Arciniegas-Alarcon, Sergio
    Krzanowski, Wojtek J.
    [J]. METHODSX, 2022, 9
  • [8] Missing value estimation for DNA microarray gene expression data: local least squares imputation (vol 21, pg 187, 2005)
    Kim, H
    Golub, GH
    Park, H
    [J]. BIOINFORMATICS, 2006, 22 (11) : 1410 - 1411
  • [9] A modified local least squares-based missing value estimation method in microarray gene expression data
    Bose, Shilpi
    Das, Chandra
    Gangopadhyay, Tamaghna
    Chattopadhyay, Samiran
    [J]. 2013 SECOND INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING, NETWORKING AND SECURITY (ADCONS 2013), 2013, : 18 - 23
  • [10] Weighted least squares estimation of the extreme value index
    Hüsler, J
    Li, DY
    Müller, S
    [J]. STATISTICS & PROBABILITY LETTERS, 2006, 76 (09) : 920 - 930