Weighted local least squares imputation method for missing value estimation

被引:0
|
作者
Ching, Wai-Ki [1 ]
Cheng, Kwai-Wa [2 ]
Li, Li-Min [1 ]
Tsing, Nam-Kiu [1 ]
Wong, Alice S. [3 ]
机构
[1] Univ Hong Kong, Dept Math, Adv Modeling & Appl Comp Lab, Hong Kong, Hong Kong, Peoples R China
[2] Univ Texas MD Anderson Canc Ctr, Houston, TX 77030 USA
[3] Univ Hong Kong, Dept Zool, Hong Kong, Hong Kong, Peoples R China
来源
关键词
missing values; microarray data; row average method; local least squares imputation method; weighted local least squares imputation method;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Missing values often exist in the data of gene expression microarray experiments. A number of methods such as the Row Average (RA) method, KNNimpute algorithm and SVDimpute algorithm have been proposed to estimate the missing values. Recently, Kim et al. proposed a Local Least Squares Imputation (LLSI) method for estimating the missing values. In this paper, we propose a Weighted Local Least Square Imputation (WLLSI) method for missing values estimation. WLLSI allows training on the weighting and therefore can take advantage of both the LLSI method and the RA method. Numerical results on both synthetic data and real microarray data are given to demonstrate the effectiveness of our proposed method. The imputation methods are then applied to a breast cancer dataset.
引用
下载
收藏
页码:280 / +
页数:3
相关论文
共 50 条
  • [21] Weighted least squares for archetypal analysis with missing data
    Giordani P.
    Kiers H.A.L.
    Behaviormetrika, 2024, 51 (1) : 441 - 475
  • [22] Jackknife resample method for precision estimation of weighted total least squares
    Wang, Leyang
    Yu, Fengbin
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (05) : 1272 - 1289
  • [23] A weighted least-squares method for parameter estimation in structured models
    Galrinho, Miguel
    Rojas, Cristian
    Hjalmarsson, Hakan
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 3322 - 3327
  • [24] State Estimation in Power System using weighted Least Squares method
    Puviya, P.
    Priyadarshini, N.
    2017 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION, EMBEDDED AND COMMUNICATION SYSTEMS (ICIIECS), 2017,
  • [25] MRF Parameter Estimation Based on Weighted Least Squares Fit Method
    Wu, Jinyan
    Yang, Bo
    Wang, Lin
    Ma, Kun
    Zhao, Xiuyang
    Zhou, Jin
    IEEE ICCSS 2016 - 2016 3RD INTERNATIONAL CONFERENCE ON INFORMATIVE AND CYBERNETICS FOR COMPUTATIONAL SOCIAL SYSTEMS (ICCSS), 2016, : 164 - 169
  • [26] Jackknife resampling parameter estimation method for weighted total least squares
    Wang, Leyang
    Yu, Fengbin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (23) : 5810 - 5828
  • [27] GENERALIZED LEAST SQUARES AND WEIGHTED LEAST SQUARES ESTIMATION METHODS FOR DISTRIBUTIONAL PARAMETERS
    Kantar, Yeliz Mert
    REVSTAT-STATISTICAL JOURNAL, 2015, 13 (03) : 263 - +
  • [28] A hybrid method for missing value imputation
    Karanikola, Aikaterini
    Kotsiantis, Sotiris
    PROCEEDINGS OF THE 23RD PAN-HELLENIC CONFERENCE OF INFORMATICS (PCI 2019), 2019, : 74 - 79
  • [29] Triple Imputation for Microarray Missing Value Estimation
    He, Chong
    Li, Hui-Hui
    Zhao, Changbo
    Li, Guo-Zheng
    Zhang, Wei
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 208 - 213
  • [30] Weighted Least Squares Realized Covariation Estimation
    Li, Yifan
    Nolte, Ingmar
    Vasios, Michalis
    Voev, Valeri
    Xu, Qi
    JOURNAL OF BANKING & FINANCE, 2022, 137