Weighted local least squares imputation method for missing value estimation

被引:0
|
作者
Ching, Wai-Ki [1 ]
Cheng, Kwai-Wa [2 ]
Li, Li-Min [1 ]
Tsing, Nam-Kiu [1 ]
Wong, Alice S. [3 ]
机构
[1] Univ Hong Kong, Dept Math, Adv Modeling & Appl Comp Lab, Hong Kong, Hong Kong, Peoples R China
[2] Univ Texas MD Anderson Canc Ctr, Houston, TX 77030 USA
[3] Univ Hong Kong, Dept Zool, Hong Kong, Hong Kong, Peoples R China
来源
关键词
missing values; microarray data; row average method; local least squares imputation method; weighted local least squares imputation method;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Missing values often exist in the data of gene expression microarray experiments. A number of methods such as the Row Average (RA) method, KNNimpute algorithm and SVDimpute algorithm have been proposed to estimate the missing values. Recently, Kim et al. proposed a Local Least Squares Imputation (LLSI) method for estimating the missing values. In this paper, we propose a Weighted Local Least Square Imputation (WLLSI) method for missing values estimation. WLLSI allows training on the weighting and therefore can take advantage of both the LLSI method and the RA method. Numerical results on both synthetic data and real microarray data are given to demonstrate the effectiveness of our proposed method. The imputation methods are then applied to a breast cancer dataset.
引用
下载
收藏
页码:280 / +
页数:3
相关论文
共 50 条
  • [31] Adaptive estimation using weighted least squares
    O'Gorman, TW
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2001, 43 (03) : 287 - 297
  • [32] The theoretic framework of local weighted approximation for microarray missing value estimation
    Liu, Chao-Chun
    Dai, Dao-Qing
    Yan, Hong
    PATTERN RECOGNITION, 2010, 43 (08) : 2993 - 3002
  • [33] Weighted Least Squares and Least Median Squares estimation for the fuzzy linear regression analysis
    D'Urso P.
    Massari R.
    METRON, 2013, 71 (3) : 279 - 306
  • [34] CONVERGENCE ANALYSIS OF WEIGHTED LEAST-SQUARES AND FAST DECOUPLED WEIGHTED LEAST-SQUARES STATE ESTIMATION
    SIRISENA, HR
    BROWN, EPM
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 1984, 6 (02) : 75 - 78
  • [35] Learning-based local weighted least squares for algebraic multigrid method
    Wang, Fan
    Gu, Xiang
    Sun, Jian
    Xu, Zongben
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 493
  • [36] Least squares estimation of ARCH models with missing observations
    Bondon, Pascal
    Bahamonde, Natalia
    JOURNAL OF TIME SERIES ANALYSIS, 2012, 33 (06) : 880 - 891
  • [37] Background estimation method with incremental iterative Re-weighted least squares
    Balcilar, Muhammet
    Sonmez, A. Coskun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2016, 10 (01) : 85 - 92
  • [38] Angle Estimation Error Reduction Method Using Weighted IMM and Least Squares
    Choi, Seong Hee
    Song, Taek Lyul
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (01) : 354 - 361
  • [39] A Weighted Least Squares Method for Guaranteed Estimation of Parameters of ARCH(1) Process
    Burkatovskaya, Yulia B.
    Vorobeychikov, Sergey E.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2009, 8 (03): : 27 - 32
  • [40] The Optimal Regularized Weighted Least-Squares Method for Impulse Response Estimation
    Emerson Boeira
    Diego Eckhard
    Journal of Control, Automation and Electrical Systems, 2023, 34 : 302 - 314