Missing value estimation for DNA microarray gene expression data: local least squares imputation

被引:311
|
作者
Kim, H
Golub, GH
Park, H
机构
[1] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[3] Natl Sci Fdn, Arlington, VA 22230 USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/bioinformatics/bth499
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Gene expression data often contain missing expression values. Effective missing value estimation methods are needed since many algorithms for gene expression data analysis require a complete matrix of gene array values. In this paper, imputation methods based on the least squares formulation are proposed to estimate missing values in the gene expression data, which exploit local similarity structures in the data as well as least squares optimization process. Results: The proposed local least squares imputation method (LLSimpute) represents a target gene that has missing values as a linear combination of similar genes. The similar genes are chosen by k-nearest neighbors or k coherent genes that have large absolute values of Pearson correlation coefficients. Non-parametric missing values estimation method of LLSimpute are designed by introducing an automatic k-value estimator. In our experiments, the proposed LLSimpute method shows competitive results when compared with other imputation methods for missing value estimation on various datasets and percentages of missing values in the data.
引用
收藏
页码:187 / 198
页数:12
相关论文
共 50 条
  • [1] A weighted Local Least Squares Imputation method for missing value estimation in microarray gene expression data
    Ching, Wai-Ki
    Li, Limin
    Tsing, Nam-Kiu
    Tai, Ching-Wan
    Ng, Tuen-Wai
    Wong, Alice S.
    Cheng, Kwai-Wa
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2010, 4 (03) : 331 - 347
  • [2] Missing value estimation for DNA microarray gene expression data: local least squares imputation (vol 21, pg 187, 2005)
    Kim, H
    Golub, GH
    Park, H
    [J]. BIOINFORMATICS, 2006, 22 (11) : 1410 - 1411
  • [3] Sequential local least squares imputation estimating missing value of microarray data
    Zhang, Xiaobai
    Song, Xiaofeng
    Wang, Huinan
    Zhan, Huanping
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2008, 38 (10) : 1112 - 1120
  • [4] Microarray missing value imputation by iterated local least squares
    Cai, ZP
    Heydari, M
    Lin, GH
    [J]. PROCEEDINGS OF THE 4TH ASIA-PACIFIC BIOINFORMATICS CONFERENCE, 2006, 3 : 159 - 168
  • [5] A modified local least squares-based missing value estimation method in microarray gene expression data
    Bose, Shilpi
    Das, Chandra
    Gangopadhyay, Tamaghna
    Chattopadhyay, Samiran
    [J]. 2013 SECOND INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING, NETWORKING AND SECURITY (ADCONS 2013), 2013, : 18 - 23
  • [6] Weighted local least squares imputation method for missing value estimation
    Ching, Wai-Ki
    Cheng, Kwai-Wa
    Li, Li-Min
    Tsing, Nam-Kiu
    Wong, Alice S.
    [J]. OPTIMIZATION AND SYSTEMS BIOLOGY, 2007, 7 : 280 - +
  • [7] Imputation of missing values in DNA microarray gene expression data
    Kim, H
    Golub, GH
    Park, H
    [J]. 2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, 2004, : 572 - 573
  • [8] Missing Value Estimation for Microarray Data by Bayesian Principal Component Analysis and Iterative Local Least Squares
    Shi, Fuxi
    Zhang, Dan
    Chen, Jun
    Karimi, Hamid Reza
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [9] An Efficient Technique for Missing value Imputation in Microarray Gene Expression Data
    Valarmathie, P.
    Dinakaran, K.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND SYSTEMS (ICCCS'14), 2014, : 73 - 80
  • [10] A Review on Missing Value Imputation Algorithms for Microarray Gene Expression Data
    Moorthy, Kohbalan
    Mohamad, Mohd Saberi
    Deris, Safaai
    [J]. CURRENT BIOINFORMATICS, 2014, 9 (01) : 18 - 22