Sequential local least squares imputation estimating missing value of microarray data

被引:49
|
作者
Zhang, Xiaobai [1 ]
Song, Xiaofeng [1 ]
Wang, Huinan [1 ]
Zhan, Huanping [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Biomed Engn, Nanjing 210016, Peoples R China
关键词
Missing value estimation; Imputation method; Least squares principle; Normalized root mean squared error (NRMSE); Microarray data;
D O I
10.1016/j.compbiomed.2008.08.006
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Missing values in microarray data can significantly affect subsequent analysis, thus it is important to estimate these missing values accurately. In this paper, a sequential local least squares imputation (SLLSimpute) method is proposed to solve this problem. It estimates missing values sequentially from the gene containing the fewest missing values and partially utilizes these estimated values. In addition, an automatic parameter selection algorithm, which can generate an appropriate number of neighboring genes for each target gene, is presented for parameter estimation. Experimental results confirmed that SLLSimpute method exhibited better estimation ability compared with other currently used imputation methods. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1112 / 1120
页数:9
相关论文
共 50 条
  • [21] Nearest neighbours in least-squares data imputation algorithms with different missing patterns
    Wasito, I
    Mirkin, B
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (04) : 926 - 949
  • [22] Cluster-based KNN Missing Value Imputation for DNA Microarray Data
    Keerin, Phimmarin
    Kurutach, Werasak
    Boongoen, Tossapon
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 445 - 450
  • [23] An efficient ensemble method for missing value imputation in microarray gene expression data
    Xinshan Zhu
    Jiayu Wang
    Biao Sun
    Chao Ren
    Ting Yang
    Jie Ding
    BMC Bioinformatics, 22
  • [24] Missing value imputation improves clustering and interpretation of gene expression microarray data
    Tuikkala, Johannes
    Elo, Laura L.
    Nevalainen, Olli S.
    Aittokallio, Tero
    BMC BIOINFORMATICS, 2008, 9 (1)
  • [25] Missing value imputation for microarray data: a comprehensive comparison study and a web tool
    Chiu, Chia-Chun
    Chan, Shih-Yao
    Wang, Chung-Ching
    Wu, Wei-Sheng
    BMC SYSTEMS BIOLOGY, 2013, 7
  • [26] An efficient ensemble method for missing value imputation in microarray gene expression data
    Zhu, Xinshan
    Wang, Jiayu
    Sun, Biao
    Ren, Chao
    Yang, Ting
    Ding, Jie
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [27] Improving missing value imputation of microarray data by using spot quality weights
    Peter Johansson
    Jari Häkkinen
    BMC Bioinformatics, 7
  • [28] Missing value imputation improves clustering and interpretation of gene expression microarray data
    Johannes Tuikkala
    Laura L Elo
    Olli S Nevalainen
    Tero Aittokallio
    BMC Bioinformatics, 9
  • [29] Improving missing value imputation of microarray data by using spot quality weights
    Johansson, Peter
    Hakkinen, Jari
    BMC BIOINFORMATICS, 2006, 7 (1)
  • [30] Smoothing Blemished Gene Expression Microarray Data via Missing Value Imputation
    Cai, Zhipeng
    Shi, Yi
    Song, Meng
    Goebel, Randy
    Lin, Guohui
    2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 5688 - 5691