Sequential local least squares imputation estimating missing value of microarray data

被引:49
|
作者
Zhang, Xiaobai [1 ]
Song, Xiaofeng [1 ]
Wang, Huinan [1 ]
Zhan, Huanping [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Biomed Engn, Nanjing 210016, Peoples R China
关键词
Missing value estimation; Imputation method; Least squares principle; Normalized root mean squared error (NRMSE); Microarray data;
D O I
10.1016/j.compbiomed.2008.08.006
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Missing values in microarray data can significantly affect subsequent analysis, thus it is important to estimate these missing values accurately. In this paper, a sequential local least squares imputation (SLLSimpute) method is proposed to solve this problem. It estimates missing values sequentially from the gene containing the fewest missing values and partially utilizes these estimated values. In addition, an automatic parameter selection algorithm, which can generate an appropriate number of neighboring genes for each target gene, is presented for parameter estimation. Experimental results confirmed that SLLSimpute method exhibited better estimation ability compared with other currently used imputation methods. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1112 / 1120
页数:9
相关论文
共 50 条
  • [31] MICROARRAY MISSING DATA IMPUTATION USING REGRESSION
    Bayrak, Tuncay
    Ogul, Hasan
    2017 13TH IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (BIOMED), 2017, : 68 - 73
  • [32] A hybrid imputation approach for microarray missing value estimation
    Huihui Li
    Changbo Zhao
    Fengfeng Shao
    Guo-Zheng Li
    Xiao Wang
    BMC Genomics, 16
  • [33] A hybrid imputation approach for microarray missing value estimation
    Li, Huihui
    Zhao, Changbo
    Shao, Fengfeng
    Li, Guo-Zheng
    Wang, Xiao
    BMC GENOMICS, 2015, 16
  • [34] Incorporating Nonlinear Relationships in Microarray Missing Value Imputation
    Yu, Tianwei
    Peng, Hesen
    Sun, Wei
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2011, 8 (03) : 723 - 731
  • [35] An Iterative Locally Auto-Weighted Least Squares Method for Microarray Missing Value Estimation
    Yu, Zeng
    Li, Tianrui
    Horng, Shi-Jinn
    Pan, Yi
    Wang, Hongjun
    Jing, Yunge
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2017, 16 (01) : 21 - 33
  • [36] The influence of missing value imputation on detection of differentially expressed genes from microarray data
    Scheel, I
    Aldrin, M
    Glad, IK
    Sorum, R
    Lyng, H
    Frigessi, A
    BIOINFORMATICS, 2005, 21 (23) : 4272 - 4279
  • [37] Missing value imputation for microarray gene expression data using histone acetylation information
    Xiang, Qian
    Dai, Xianhua
    Deng, Yangyang
    He, Caisheng
    Wang, Jiang
    Feng, Jihua
    Dai, Zhiming
    BMC BIOINFORMATICS, 2008, 9 (1)
  • [38] KNN-DTW Based Missing Value Imputation for Microarray Time Series Data
    Hsu, Hui-Huang
    Yang, Andy C.
    Lu, Ming-Da
    JOURNAL OF COMPUTERS, 2011, 6 (03) : 418 - 425
  • [39] A cluster-directed framework for neighbour based imputation of missing value in microarray data
    Keerin, Phimmarin
    Kurutach, Werasak
    Boongoen, Tossapon
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 15 (02) : 165 - 193
  • [40] Missing value imputation for microarray gene expression data using histone acetylation information
    Qian Xiang
    Xianhua Dai
    Yangyang Deng
    Caisheng He
    Jiang Wang
    Jihua Feng
    Zhiming Dai
    BMC Bioinformatics, 9