Incorporating Nonlinear Relationships in Microarray Missing Value Imputation

被引:17
|
作者
Yu, Tianwei [1 ]
Peng, Hesen [1 ]
Sun, Wei [2 ,3 ]
机构
[1] Emory Univ, Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
[2] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
关键词
gene expression; statistical analysis; missing value; GENE-EXPRESSION DATA; BIOLOGICAL KNOWLEDGE; REGRESSION;
D O I
10.1109/TCBB.2010.73
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microarray gene expression data often contain missing values. Accurate estimation of the missing values is important for downstream data analyses that require complete data. Nonlinear relationships between gene expression levels have not been well-utilized in missing value imputation. We propose an imputation scheme based on nonlinear dependencies between genes. By simulations based on real microarray data, we show that incorporating nonlinear relationships could improve the accuracy of missing value imputation, both in terms of normalized root-mean-squared error and in terms of the preservation of the list of significant genes in statistical testing. In addition, we studied the impact of artificial dependencies introduced by data normalization on the simulation results. Our results suggest that methods relying on global correlation structures may yield overly optimistic simulation results when the data have been subjected to row (gene)-wise mean removal.
引用
收藏
页码:723 / 731
页数:9
相关论文
共 50 条
  • [1] Triple Imputation for Microarray Missing Value Estimation
    He, Chong
    Li, Hui-Hui
    Zhao, Changbo
    Li, Guo-Zheng
    Zhang, Wei
    [J]. PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 208 - 213
  • [2] A hybrid imputation approach for microarray missing value estimation
    Huihui Li
    Changbo Zhao
    Fengfeng Shao
    Guo-Zheng Li
    Xiao Wang
    [J]. BMC Genomics, 16
  • [3] A hybrid imputation approach for microarray missing value estimation
    Li, Huihui
    Zhao, Changbo
    Shao, Fengfeng
    Li, Guo-Zheng
    Wang, Xiao
    [J]. BMC GENOMICS, 2015, 16
  • [4] A Novel Approach for Missing Value Imputation and Classification of Microarray Dataset
    Senapti, Rajashree
    Shaw, Kailash
    Mishra, Sashikala
    Mishra, Debahuti
    [J]. INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 : 1067 - 1071
  • [5] A Quasi-linear Approach for Microarray Missing Value Imputation
    Cheng, Yu
    Wang, Lan
    Hu, Jinglu
    [J]. NEURAL INFORMATION PROCESSING, PT I, 2011, 7062 : 233 - +
  • [6] Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data
    Sehgal, MSB
    Gondal, I
    Dooley, LS
    [J]. BIOINFORMATICS, 2005, 21 (10) : 2417 - 2423
  • [7] Microarray Missing Value Imputation: A Regularized Local Learning Method
    Wang, Aiguo
    Chen, Ye
    An, Ning
    Yang, Jing
    Li, Lian
    Jiang, Lili
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (03) : 980 - 993
  • [8] Semi-supervised Imputation for Microarray Missing Value Estimation
    Li, Hui-Hui
    Shao, Feng-Feng
    Li, Guo-Zheng
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2014,
  • [9] Microarray missing value imputation by iterated local least squares
    Cai, ZP
    Heydari, M
    Lin, GH
    [J]. PROCEEDINGS OF THE 4TH ASIA-PACIFIC BIOINFORMATICS CONFERENCE, 2006, 3 : 159 - 168
  • [10] An Efficient Technique for Missing value Imputation in Microarray Gene Expression Data
    Valarmathie, P.
    Dinakaran, K.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND SYSTEMS (ICCCS'14), 2014, : 73 - 80