KNN-DTW Based Missing Value Imputation for Microarray Time Series Data

被引:26
|
作者
Hsu, Hui-Huang [1 ]
Yang, Andy C. [2 ]
Lu, Ming-Da [2 ]
机构
[1] Tamkang Univ, Dept Comp Sci & Informat Engn, Comp Sci & Informat Engn, Taipei, Taiwan
[2] Tamkang Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词
microarray time series data; missing value imputation; dynamic time warping; k-nearest neighbor;
D O I
10.4304/jcp.6.3.418-425
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Microarray technology provides an opportunity for scientists to analyze thousands of gene expression profiles simultaneously. However, microarray gene expression data often contain multiple missing expression values due to many reasons. Effective methods for missing value imputation in gene expression data are needed since many algorithms for gene analysis require a complete matrix of gene array values. Several algorithms are proposed to handle this problem, but they have various limitations. In this paper, we develop a novel method to impute missing values in microarray time-series data combining k-nearest neighbor (KNN) and dynamic time warping (DTW). We also analyze and implement several variants of DTW to further improve the efficiency and accuracy of our method. Experimental results show that our method is more accurate compared with existing missing value imputation methods on real microarray time series datasets.
引用
收藏
页码:418 / 425
页数:8
相关论文
共 50 条
  • [1] Cluster-based KNN Missing Value Imputation for DNA Microarray Data
    Keerin, Phimmarin
    Kurutach, Werasak
    Boongoen, Tossapon
    [J]. PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 445 - 450
  • [2] kNN Ensembles with Penalized DTW for Multivariate Time Series Imputation
    Oehmcke, Stefan
    Zielinski, Oliver
    Kramer, Oliver
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 2774 - 2781
  • [3] Missing Value Imputation on Multidimensional Time Series
    Bansal, Parikshit
    Deshpande, Prathamesh
    Sarawagi, Sunita
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 14 (11): : 2533 - 2545
  • [4] imputeTS: Time Series Missing Value Imputation in R
    Moritz, Steffen
    Bartz-Beielstein, Thomas
    [J]. R JOURNAL, 2017, 9 (01): : 207 - 218
  • [5] Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data
    Sehgal, MSB
    Gondal, I
    Dooley, LS
    [J]. BIOINFORMATICS, 2005, 21 (10) : 2417 - 2423
  • [6] Attention-Based Multi-modal Missing Value Imputation for Time Series Data with High Missing Rate
    Ahmed, Khandakar Tanvir
    Baul, Sudipto
    Fu, Yanjie
    Zhang, Wei
    [J]. PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 469 - 477
  • [7] A cluster-directed framework for neighbour based imputation of missing value in microarray data
    Keerin, Phimmarin
    Kurutach, Werasak
    Boongoen, Tossapon
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 15 (02) : 165 - 193
  • [8] Autoregressive-Model-Based Missing Value Estimation for DNA Microarray Time Series Data
    Choong, Miew Keen
    Charbit, Maurice
    Yan, Hong
    [J]. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2009, 13 (01): : 131 - 137
  • [9] An Efficient Technique for Missing value Imputation in Microarray Gene Expression Data
    Valarmathie, P.
    Dinakaran, K.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND SYSTEMS (ICCCS'14), 2014, : 73 - 80
  • [10] A Review on Missing Value Imputation Algorithms for Microarray Gene Expression Data
    Moorthy, Kohbalan
    Mohamad, Mohd Saberi
    Deris, Safaai
    [J]. CURRENT BIOINFORMATICS, 2014, 9 (01) : 18 - 22