An accurate and robust missing value estimation for Microarray data: least absolute deviation imputation

被引:0
|
作者
Cao, Yi [1 ]
Poh, Kim Leng [1 ]
机构
[1] Natl Univ Singapore, Dept Ind & Syst Engn, Singapore 119260, Singapore
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microarray experiments often produce missing expression values due to various reasons. Accurate and robust estimation methods of missing values are needed since many algorithms and statistical analysis require a complete data set. In this paper novel imputation methods based on least absolute deviation estimate, referred to as LADimpute, are proposed to estimate missing entries in microarray data. The proposed LADimpute method takes into consideration the local similarity structures in addition to employment of least absolute deviation estimate. Once those genes similar to the target gene with missing values are selected based on some metric, all missing values in the target gene can be estimated by the linear combination of the similar genes simultaneously. In our experiments, the proposed LADimpute method exhibits its accurate and robust performance when compared to other methods over different datasets, changing missing rates and various noise levels.
引用
收藏
页码:157 / +
页数:2
相关论文
共 50 条
  • [1] Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data
    Sehgal, MSB
    Gondal, I
    Dooley, LS
    [J]. BIOINFORMATICS, 2005, 21 (10) : 2417 - 2423
  • [2] Missing value estimation for DNA microarray gene expression data: local least squares imputation
    Kim, H
    Golub, GH
    Park, H
    [J]. BIOINFORMATICS, 2005, 21 (02) : 187 - 198
  • [3] A weighted Local Least Squares Imputation method for missing value estimation in microarray gene expression data
    Ching, Wai-Ki
    Li, Limin
    Tsing, Nam-Kiu
    Tai, Ching-Wan
    Ng, Tuen-Wai
    Wong, Alice S.
    Cheng, Kwai-Wa
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2010, 4 (03) : 331 - 347
  • [4] Sequential local least squares imputation estimating missing value of microarray data
    Zhang, Xiaobai
    Song, Xiaofeng
    Wang, Huinan
    Zhan, Huanping
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2008, 38 (10) : 1112 - 1120
  • [5] Triple Imputation for Microarray Missing Value Estimation
    He, Chong
    Li, Hui-Hui
    Zhao, Changbo
    Li, Guo-Zheng
    Zhang, Wei
    [J]. PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 208 - 213
  • [6] Collateral missing value estimation: Robust missing value estimation for consequent microarray data processing
    Sehgal, MSB
    Gondal, I
    Dooley, L
    [J]. AI 2005: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2005, 3809 : 274 - 283
  • [7] Microarray missing value imputation by iterated local least squares
    Cai, ZP
    Heydari, M
    Lin, GH
    [J]. PROCEEDINGS OF THE 4TH ASIA-PACIFIC BIOINFORMATICS CONFERENCE, 2006, 3 : 159 - 168
  • [8] A hybrid imputation approach for microarray missing value estimation
    Huihui Li
    Changbo Zhao
    Fengfeng Shao
    Guo-Zheng Li
    Xiao Wang
    [J]. BMC Genomics, 16
  • [9] A hybrid imputation approach for microarray missing value estimation
    Li, Huihui
    Zhao, Changbo
    Shao, Fengfeng
    Li, Guo-Zheng
    Wang, Xiao
    [J]. BMC GENOMICS, 2015, 16
  • [10] Robust imputation method for missing values in microarray data
    Yoon, Dankyu
    Lee, Eun-Kyung
    Park, Taesung
    [J]. BMC BIOINFORMATICS, 2007, 8 (Suppl 2)