Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrodinger equations

被引:21
|
作者
Kong LingHua [1 ]
Wang Lan [1 ]
Jiang ShanShan [2 ]
Duan YaLi [3 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Informat Sci, Nanchang 330022, Peoples R China
[2] Beijing Univ Chem Technol, Sch Sci, Beijing 100029, Peoples R China
[3] Univ Sci & Technol China, Sch Math, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Klein-Gordon-Schrodinger equations; multisymplectic integrator; Fourier pseudo-spectral method; conservation law; soliton; RUNGE-KUTTA METHODS;
D O I
10.1007/s11425-013-4575-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A multisymplectic Fourier pseudo-spectral scheme, which exactly preserves the discrete multisymplectic conservation law, is presented to solve the Klein-Gordon-Schrodinger equations. The scheme is of spectral accuracy in space and of second order in time. The scheme preserves the discrete multisymplectic conservation law and the charge conservation law. Moreover, the residuals of some other conservation laws are derived for the geometric numerical integrator. Extensive numerical simulations illustrate the numerical behavior of the multisymplectic scheme, and demonstrate the correctness of the theoretical analysis.
引用
下载
收藏
页码:915 / 932
页数:18
相关论文
共 50 条
  • [31] On Klein-Gordon-Schrodinger Control System
    Wang, Quan-Fang
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 2253 - 2257
  • [32] Global existence and uniform decay for the coupled Klein-Gordon-Schrodinger equations
    Cavalcanti, MM
    Cavalcanti, VND
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (03): : 285 - 307
  • [33] PULLBACK ATTRACTORS AND INVARIANT MEASURES FOR DISCRETE KLEIN-GORDON-SCHRODINGER EQUATIONS
    Zhao, Caidi
    Xue, Gang
    Lukaszewicz, Grzegorz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 4021 - 4044
  • [34] Existence and asymptotic behaviour for the solutions of the coupled Klein-Gordon-Schrodinger equations
    Cavalcanti, VND
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 1267 - 1278
  • [35] Fractional Klein-Gordon-Schrodinger equations with Mittag-Leffler memory
    Veeresha, P.
    Prakasha, D. G.
    Singh, Jagdev
    Kumar, Devendra
    Baleanu, Dumitru
    CHINESE JOURNAL OF PHYSICS, 2020, 68 : 65 - 78
  • [36] Attractor for dissipative Klein-Gordon-Schrodinger equations in R-3
    Guo, BL
    Li, YS
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 136 (02) : 356 - 377
  • [37] Statistical solution and Liouville type theorem for the Klein-Gordon-Schrodinger equations
    Zhao, Caidi
    Caraballo, Tomas
    Lukaszewicz, Grzegorz
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 281 : 1 - 32
  • [38] A local energy-preserving scheme for Klein-Gordon-Schrodinger equations
    Cai Jia-Xiang
    Wang Jia-Lin
    Wang Yu-Shun
    CHINESE PHYSICS B, 2015, 24 (05)
  • [39] A linearized conservative nonconforming FEM for nonlinear Klein-Gordon-Schrodinger equations
    Shi, Dongyang
    Zhang, Houchao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 106 : 57 - 73
  • [40] New energy-preserving schemes for Klein-Gordon-Schrodinger equations
    Zhang, Jingjing
    Kong, Linghua
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (15-16) : 6969 - 6982