PULLBACK ATTRACTORS AND INVARIANT MEASURES FOR DISCRETE KLEIN-GORDON-SCHRODINGER EQUATIONS

被引:40
|
作者
Zhao, Caidi [1 ]
Xue, Gang [1 ]
Lukaszewicz, Grzegorz [2 ]
机构
[1] Wenzhou Univ, Coll Math Phys & Elect Informat Engn, Wenzhou 325035, Peoples R China
[2] Univ Warsaw, Inst Appl Math & Mech, Banacha 2, PL-02097 Warsaw, Poland
来源
关键词
Non-autonomous lattice system; pullback attractor; invariant measures; discrete Klein-Gordon-Schrodinger equations; DISSIPATIVE DYNAMICAL-SYSTEMS; REACTION-DIFFUSION EQUATIONS; STATISTICAL SOLUTIONS; GLOBAL ATTRACTORS; KERNEL SECTIONS; EXISTENCE;
D O I
10.3934/dcdsb.2018122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we first provide a sufficient and necessary condition for the existence of a pullback-D attractor for the process defined on a Hilbert space of infinite sequences. As an application, we investigate the non-autonomous discrete Klein-Gordon-Schrodinger system of equations, prove the existence of the pullback-D attractor and then the existence of a unique family of invariant Borel probability measures associated with the considered system.
引用
收藏
页码:4021 / 4044
页数:24
相关论文
共 50 条
  • [1] Global attractors for the discrete Klein-Gordon-Schrodinger type equations
    Li, Chunqiu
    Hsu, Cheng Hsiung
    Lin, Jian Jhong
    Zhao, Caidi
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2014, 20 (10) : 1404 - 1426
  • [2] Random attractors for stochastic discrete Klein-Gordon-Schrodinger equations
    Yan, Weiping
    Ji, Shuguan
    Li, Yong
    [J]. PHYSICS LETTERS A, 2009, 373 (14) : 1268 - 1275
  • [3] Pullback Exponential Attractors for Nonautonomous Klein-Gordon-Schrodinger Equations on Infinite Lattices
    Li, Chunqiu
    Zhao, Min
    Zhao, Caidi
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [4] Attractors for the Klein-Gordon-Schrodinger equation
    Wang, B
    Lange, H
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) : 2445 - 2457
  • [5] RANDOM ATTRACTORS FOR STOCHASTIC DISCRETE KLEIN-GORDON-SCHRODINGER EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTIONS
    Shu, Ji
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (04): : 1587 - 1599
  • [6] PULLBACK ATTRACTORS AND INVARIANT MEASURES FOR THE DISCRETE ZAKHAROV EQUATIONS
    Zhu, Zeqi
    Sang, Yanmiao
    Zhao, Caidi
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (06): : 2333 - 2357
  • [7] Upper semicontinuity of attractors for the Klein-Gordon-Schrodinger equation
    Lu, KN
    Wang, BX
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (01): : 157 - 168
  • [8] Random attractors for the stochastic damped Klein-Gordon-Schrodinger system
    Zhao, Xin
    Li, Yin
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [9] Maximal Attractors for the Klein-Gordon-Schrodinger Equation in Unbounded Domain
    Park, Jong Yeoul
    Kim, Jung Ae
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2009, 108 (02) : 197 - 213
  • [10] Global attractors for the Klein-Gordon-Schrodinger equation in unbounded domains
    Lu, KN
    Wang, BX
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 170 (02) : 281 - 316