Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrodinger equations

被引:21
|
作者
Kong LingHua [1 ]
Wang Lan [1 ]
Jiang ShanShan [2 ]
Duan YaLi [3 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Informat Sci, Nanchang 330022, Peoples R China
[2] Beijing Univ Chem Technol, Sch Sci, Beijing 100029, Peoples R China
[3] Univ Sci & Technol China, Sch Math, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Klein-Gordon-Schrodinger equations; multisymplectic integrator; Fourier pseudo-spectral method; conservation law; soliton; RUNGE-KUTTA METHODS;
D O I
10.1007/s11425-013-4575-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A multisymplectic Fourier pseudo-spectral scheme, which exactly preserves the discrete multisymplectic conservation law, is presented to solve the Klein-Gordon-Schrodinger equations. The scheme is of spectral accuracy in space and of second order in time. The scheme preserves the discrete multisymplectic conservation law and the charge conservation law. Moreover, the residuals of some other conservation laws are derived for the geometric numerical integrator. Extensive numerical simulations illustrate the numerical behavior of the multisymplectic scheme, and demonstrate the correctness of the theoretical analysis.
引用
收藏
页码:915 / 932
页数:18
相关论文
共 50 条
  • [41] An efficient conservative difference scheme for fractional Klein-Gordon-Schrodinger equations
    Wang, Jun-jie
    Xiao, Ai-guo
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 320 : 691 - 709
  • [42] Explicit multi-symplectic methods for Klein-Gordon-Schrodinger equations
    Hong, Jialin
    Jiang, Shanshan
    Li, Chun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (09) : 3517 - 3532
  • [43] Pseudo-spectral fourier method as applied to finding localized spherical soliton solutions of (3 + 1)-dimensional Klein–Gordon equations
    E. G. Ekomasov
    R. K. Salimov
    Computational Mathematics and Mathematical Physics, 2016, 56 : 1604 - 1610
  • [44] SCHRODINGER LIMIT OF WEAKLY DISSIPATIVE STOCHASTIC KLEIN-GORDON-SCHRODINGER EQUATIONS AND LARGE DEVIATIONS
    Guo, Boling
    Lv, Yan
    Wang, Wei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (07) : 2795 - 2818
  • [45] A New Explicit Symplectic Fourier Pseudospectral Method for Klein-Gordon-Schrodinger Equation
    Yang, Yanhong
    Song, Yongzhong
    Li, Haochen
    Wang, Yushun
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (01) : 242 - 260
  • [46] Unconditional Convergence of Conservative Spectral Galerkin Methods for the Coupled Fractional Nonlinear Klein-Gordon-Schrodinger Equations
    Hu, Dongdong
    Fu, Yayun
    Cai, Wenjun
    Wang, Yushun
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 94 (03)
  • [47] Uniformly accurate nested Picard iterative integrators for the Klein-Gordon-Schrodinger equation in the nonrelativistic regime
    Cai, Yongyong
    Zhou, Xuanxuan
    NUMERICAL ALGORITHMS, 2023, 94 (01) : 371 - 396
  • [48] Klein-Gordon-Schrodinger system: Dinucleon field
    Ran, Yanping
    Shi, Qihong
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (11)
  • [49] Explicit Multisymplectic Fourier Pseudospectral Scheme for the Klein-Gordon-Zakharov Equations
    Cai Jia-Xiang
    Liang Hua
    CHINESE PHYSICS LETTERS, 2012, 29 (08)
  • [50] Uniform decay for the coupled Klein-Gordon-Schrodinger equations with locally distributed damping
    Bisognin, V.
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domingos
    Soriano, J.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (1-2): : 91 - 113