Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrodinger equations

被引:21
|
作者
Kong LingHua [1 ]
Wang Lan [1 ]
Jiang ShanShan [2 ]
Duan YaLi [3 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Informat Sci, Nanchang 330022, Peoples R China
[2] Beijing Univ Chem Technol, Sch Sci, Beijing 100029, Peoples R China
[3] Univ Sci & Technol China, Sch Math, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Klein-Gordon-Schrodinger equations; multisymplectic integrator; Fourier pseudo-spectral method; conservation law; soliton; RUNGE-KUTTA METHODS;
D O I
10.1007/s11425-013-4575-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A multisymplectic Fourier pseudo-spectral scheme, which exactly preserves the discrete multisymplectic conservation law, is presented to solve the Klein-Gordon-Schrodinger equations. The scheme is of spectral accuracy in space and of second order in time. The scheme preserves the discrete multisymplectic conservation law and the charge conservation law. Moreover, the residuals of some other conservation laws are derived for the geometric numerical integrator. Extensive numerical simulations illustrate the numerical behavior of the multisymplectic scheme, and demonstrate the correctness of the theoretical analysis.
引用
收藏
页码:915 / 932
页数:18
相关论文
共 50 条