Existence and uniqueness of energy solution to Klein-Gordon-Schrodinger equations

被引:11
|
作者
Shi, Qihong [1 ]
Wang, Shu [2 ]
Li, Yong [2 ]
机构
[1] Hebei Finance Univ, Dept Basic Courses, Baoding 071051, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
关键词
Nonlinear; KGS equations; Finite-energy solution; Existence; Uniqueness; UNIFORM DECAY; SYSTEM;
D O I
10.1016/j.jde.2011.09.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the initial value problem for the non-linear Klein-Gordon-Schrodinger (KGS) equations in R(3+1) time-space. By using viscous approach, the existence of the global finite-energy solution is established for the nonlinear KGS equations by compactness argument. In addition, the uniqueness of the solution is proved by introducing a function with integral form. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:168 / 180
页数:13
相关论文
共 50 条
  • [1] Global existence and uniform decay for the coupled Klein-Gordon-Schrodinger equations
    Cavalcanti, MM
    Cavalcanti, VND
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (03): : 285 - 307
  • [2] Existence and asymptotic behaviour for the solutions of the coupled Klein-Gordon-Schrodinger equations
    Cavalcanti, VND
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 1267 - 1278
  • [3] Statistical solution and Liouville type theorem for the Klein-Gordon-Schrodinger equations
    Zhao, Caidi
    Caraballo, Tomas
    Lukaszewicz, Grzegorz
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 281 : 1 - 32
  • [4] Global existence and asymptotic behavior of solutions for the coupled Klein-Gordon-Schrodinger equations
    Guo, BL
    Miao, CX
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1995, 38 (12): : 1444 - 1456
  • [5] Global existence and asymptotic behavior of solutions for the coupled Klein-Gordon-Schrodinger equations
    郭柏灵
    苗长兴
    Science China Mathematics, 1995, (12) : 1444 - 1456
  • [6] A local energy-preserving scheme for Klein-Gordon-Schrodinger equations
    Cai Jia-Xiang
    Wang Jia-Lin
    Wang Yu-Shun
    CHINESE PHYSICS B, 2015, 24 (05)
  • [7] New energy-preserving schemes for Klein-Gordon-Schrodinger equations
    Zhang, Jingjing
    Kong, Linghua
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (15-16) : 6969 - 6982
  • [8] Global solution in a weak energy class for Klein-Gordon-Schrodinger system
    Shi, Qihong
    Jia, Yaqian
    Wang, Xunyang
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (02): : 633 - 643
  • [9] COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS .2.
    FUKUDA, I
    TSUTSUMI, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (02) : 358 - 378
  • [10] The periodic wave solutions for the Klein-Gordon-Schrodinger equations
    Wang, ML
    Zhou, YB
    PHYSICS LETTERS A, 2003, 318 (1-2) : 84 - 92