Existence and uniqueness of energy solution to Klein-Gordon-Schrodinger equations

被引:11
|
作者
Shi, Qihong [1 ]
Wang, Shu [2 ]
Li, Yong [2 ]
机构
[1] Hebei Finance Univ, Dept Basic Courses, Baoding 071051, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
关键词
Nonlinear; KGS equations; Finite-energy solution; Existence; Uniqueness; UNIFORM DECAY; SYSTEM;
D O I
10.1016/j.jde.2011.09.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the initial value problem for the non-linear Klein-Gordon-Schrodinger (KGS) equations in R(3+1) time-space. By using viscous approach, the existence of the global finite-energy solution is established for the nonlinear KGS equations by compactness argument. In addition, the uniqueness of the solution is proved by introducing a function with integral form. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:168 / 180
页数:13
相关论文
共 50 条
  • [31] Attractor for dissipative Klein-Gordon-Schrodinger equations in R-3
    Guo, BL
    Li, YS
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 136 (02) : 356 - 377
  • [32] A linearized conservative nonconforming FEM for nonlinear Klein-Gordon-Schrodinger equations
    Shi, Dongyang
    Zhang, Houchao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 106 : 57 - 73
  • [33] An efficient conservative difference scheme for fractional Klein-Gordon-Schrodinger equations
    Wang, Jun-jie
    Xiao, Ai-guo
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 320 : 691 - 709
  • [34] Explicit multi-symplectic methods for Klein-Gordon-Schrodinger equations
    Hong, Jialin
    Jiang, Shanshan
    Li, Chun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (09) : 3517 - 3532
  • [35] SCHRODINGER LIMIT OF WEAKLY DISSIPATIVE STOCHASTIC KLEIN-GORDON-SCHRODINGER EQUATIONS AND LARGE DEVIATIONS
    Guo, Boling
    Lv, Yan
    Wang, Wei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (07) : 2795 - 2818
  • [36] On existence and scattering theory for the Klein-Gordon-Schrodinger system in an infinite -norm setting
    Banquet, Carlos
    Ferreira, Lucas C. F.
    Villamizar-Roa, Elder J.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (03) : 781 - 804
  • [37] Approximate solution for the Klein-Gordon-Schrodinger equation by the homotopy analysis method
    Wang Jia
    Li Biao
    Ye Wang-Chuan
    CHINESE PHYSICS B, 2010, 19 (03)
  • [38] Klein-Gordon-Schrodinger system: Dinucleon field
    Ran, Yanping
    Shi, Qihong
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (11)
  • [39] Energy Decay of Klein-Gordon-Schrodinger Type with Linear Memory Term
    Poulou, Marilena N.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013, (11) : 1 - 16
  • [40] Uniform decay for the coupled Klein-Gordon-Schrodinger equations with locally distributed damping
    Bisognin, V.
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domingos
    Soriano, J.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (1-2): : 91 - 113