Approximate solution for the Klein-Gordon-Schrodinger equation by the homotopy analysis method

被引:4
|
作者
Wang Jia [1 ,2 ]
Li Biao [1 ,2 ,3 ]
Ye Wang-Chuan [1 ,2 ]
机构
[1] Ningbo Univ, Ctr Nonlinear Sci, Ningbo 315211, Zhejiang, Peoples R China
[2] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[3] Chinese Acad Sci, MM Key Lab, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
Klein-Gordon-Schrodinger equation; homotopy analysis method; approximate solution; NONLINEAR EVOLUTION-EQUATIONS; SOLITARY WAVE SOLUTIONS; ADOMIANS DECOMPOSITION METHOD; TANH-FUNCTION METHOD; DE-VRIES EQUATION; BURGERS-EQUATION; NUMERICAL-SOLUTION; SOLITONS; ORDER; TERMS;
D O I
10.1088/1674-1056/19/3/030401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon-Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon-Schrodinger equation contain an auxiliary parameter which provides a convenient way to control the convergence region and rate of the series solutions. Through errors analysis and numerical simulation, we can see the approximate solution is very close to the exact solution.
引用
收藏
页数:7
相关论文
共 50 条