Statistical solution and Liouville type theorem for the Klein-Gordon-Schrodinger equations

被引:47
|
作者
Zhao, Caidi [1 ]
Caraballo, Tomas [2 ]
Lukaszewicz, Grzegorz [3 ]
机构
[1] Wenzhou Univ, Dept Math, Wenzhou 325035, Zhejiang, Peoples R China
[2] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, Fac Matemat, C Tarfia S-N, Seville 41012, Spain
[3] Univ Warsaw, Inst Appl Math & Mech, Banacha 2, PL-02097 Warsaw, Poland
关键词
Klein-Gordon-Schodinger equations; Statistical solution; Pullback attractor; Invariant measure; Liouville type theorem;
D O I
10.1016/j.jde.2021.01.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the authors investigate the system of Schrodinger and Klein-Gordon equations with Yukawa coupling. They first prove the existence of pullback attractor and construct a family of invariant Borel probability measures. Then they establish that this family of probability measures satisfies a Liouville type theorem and is indeed a statistical solution for the coupling equations. Further, they reveal that the invariant property of the statistical solution is a particular situation of the Liouville type theorem. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 32
页数:32
相关论文
共 50 条
  • [1] Existence and uniqueness of energy solution to Klein-Gordon-Schrodinger equations
    Shi, Qihong
    Wang, Shu
    Li, Yong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (01) : 168 - 180
  • [2] Global attractors for the discrete Klein-Gordon-Schrodinger type equations
    Li, Chunqiu
    Hsu, Cheng Hsiung
    Lin, Jian Jhong
    Zhao, Caidi
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2014, 20 (10) : 1404 - 1426
  • [3] COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS .2.
    FUKUDA, I
    TSUTSUMI, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (02) : 358 - 378
  • [4] The periodic wave solutions for the Klein-Gordon-Schrodinger equations
    Wang, ML
    Zhou, YB
    PHYSICS LETTERS A, 2003, 318 (1-2) : 84 - 92
  • [5] SINGULAR LIMITS OF KLEIN-GORDON-SCHRODINGER EQUATIONS TO SCHRODINGER-YUKAWA EQUATIONS
    Bao, Weizhu
    Dong, Xuanchun
    Wang, Shu
    MULTISCALE MODELING & SIMULATION, 2010, 8 (05): : 1742 - 1769
  • [6] FINITE DIMENSIONALITY OF A KLEIN-GORDON-SCHRODINGER TYPE SYSTEM
    Poulou, Marilena N.
    Stavrakakis, Nikolaos M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2009, 2 (01): : 149 - 161
  • [7] New exact solutions of coupled Klein-Gordon-Schrodinger equations
    Liu, CS
    Du, XH
    ACTA PHYSICA SINICA, 2005, 54 (03) : 1039 - 1043
  • [8] Stability of stationary states for the coupled Klein-Gordon-Schrodinger equations
    Univ of Tokyo, Tokyo, Japan
    Nonlinear Anal Theory Methods Appl, 4 (455-461):
  • [9] On Coupled Klein-Gordon-Schrodinger Equations with Acoustic Boundary Conditions
    Ha, Tae Gab
    Park, Jong Yeoul
    BOUNDARY VALUE PROBLEMS, 2010,
  • [10] Generalized solitary wave solutions for the Klein-Gordon-Schrodinger equations
    Wang, Yue-Peng
    Xia, Da-Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (11-12) : 2300 - 2306