Statistical solution and Liouville type theorem for the Klein-Gordon-Schrodinger equations

被引:47
|
作者
Zhao, Caidi [1 ]
Caraballo, Tomas [2 ]
Lukaszewicz, Grzegorz [3 ]
机构
[1] Wenzhou Univ, Dept Math, Wenzhou 325035, Zhejiang, Peoples R China
[2] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, Fac Matemat, C Tarfia S-N, Seville 41012, Spain
[3] Univ Warsaw, Inst Appl Math & Mech, Banacha 2, PL-02097 Warsaw, Poland
关键词
Klein-Gordon-Schodinger equations; Statistical solution; Pullback attractor; Invariant measure; Liouville type theorem;
D O I
10.1016/j.jde.2021.01.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the authors investigate the system of Schrodinger and Klein-Gordon equations with Yukawa coupling. They first prove the existence of pullback attractor and construct a family of invariant Borel probability measures. Then they establish that this family of probability measures satisfies a Liouville type theorem and is indeed a statistical solution for the coupling equations. Further, they reveal that the invariant property of the statistical solution is a particular situation of the Liouville type theorem. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 32
页数:32
相关论文
共 50 条
  • [21] STATISTICAL SOLUTION AND KOLMOGOROV ENTROPY FOR THE IMPULSIVE DISCRETE KLEIN-GORDON-SCHRODINGER-TYPE EQUATIONS
    Lin, Zehan
    Xu, Chongbin
    Zhao, Caidi
    Li, Chujin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (01): : 20 - 48
  • [22] MEASURE ATTRACTOR FOR A STOCHASTIC KLEIN-GORDON-SCHRODINGER TYPE SYSTEM
    Poulou, M. N.
    Zographopoulos, N. B.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (5-6) : 489 - 510
  • [23] Global existence and uniform decay for the coupled Klein-Gordon-Schrodinger equations
    Cavalcanti, MM
    Cavalcanti, VND
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (03): : 285 - 307
  • [24] PULLBACK ATTRACTORS AND INVARIANT MEASURES FOR DISCRETE KLEIN-GORDON-SCHRODINGER EQUATIONS
    Zhao, Caidi
    Xue, Gang
    Lukaszewicz, Grzegorz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 4021 - 4044
  • [25] Existence and asymptotic behaviour for the solutions of the coupled Klein-Gordon-Schrodinger equations
    Cavalcanti, VND
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 1267 - 1278
  • [26] Fractional Klein-Gordon-Schrodinger equations with Mittag-Leffler memory
    Veeresha, P.
    Prakasha, D. G.
    Singh, Jagdev
    Kumar, Devendra
    Baleanu, Dumitru
    CHINESE JOURNAL OF PHYSICS, 2020, 68 : 65 - 78
  • [27] Attractor for dissipative Klein-Gordon-Schrodinger equations in R-3
    Guo, BL
    Li, YS
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 136 (02) : 356 - 377
  • [28] A local energy-preserving scheme for Klein-Gordon-Schrodinger equations
    Cai Jia-Xiang
    Wang Jia-Lin
    Wang Yu-Shun
    CHINESE PHYSICS B, 2015, 24 (05)
  • [29] A linearized conservative nonconforming FEM for nonlinear Klein-Gordon-Schrodinger equations
    Shi, Dongyang
    Zhang, Houchao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 106 : 57 - 73
  • [30] New energy-preserving schemes for Klein-Gordon-Schrodinger equations
    Zhang, Jingjing
    Kong, Linghua
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (15-16) : 6969 - 6982