Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrodinger equations

被引:21
|
作者
Kong LingHua [1 ]
Wang Lan [1 ]
Jiang ShanShan [2 ]
Duan YaLi [3 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Informat Sci, Nanchang 330022, Peoples R China
[2] Beijing Univ Chem Technol, Sch Sci, Beijing 100029, Peoples R China
[3] Univ Sci & Technol China, Sch Math, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Klein-Gordon-Schrodinger equations; multisymplectic integrator; Fourier pseudo-spectral method; conservation law; soliton; RUNGE-KUTTA METHODS;
D O I
10.1007/s11425-013-4575-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A multisymplectic Fourier pseudo-spectral scheme, which exactly preserves the discrete multisymplectic conservation law, is presented to solve the Klein-Gordon-Schrodinger equations. The scheme is of spectral accuracy in space and of second order in time. The scheme preserves the discrete multisymplectic conservation law and the charge conservation law. Moreover, the residuals of some other conservation laws are derived for the geometric numerical integrator. Extensive numerical simulations illustrate the numerical behavior of the multisymplectic scheme, and demonstrate the correctness of the theoretical analysis.
引用
收藏
页码:915 / 932
页数:18
相关论文
共 50 条
  • [1] Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrdinger equations
    KONG LingHua
    WANG Lan
    JIANG ShanShan
    DUAN YaLi
    [J]. Science China Mathematics, 2013, 56 (05) : 916 - 933
  • [2] Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrödinger equations
    LingHua Kong
    Lan Wang
    ShanShan Jiang
    YaLi Duan
    [J]. Science China Mathematics, 2013, 56 : 915 - 932
  • [3] Conservative Fourier pseudo-spectral schemes for general Klein-Gordon-Schrodinger equations
    Wang, Junjie
    Cai, Shanshan
    Ni, Yonggen
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (06) : 1339 - 1362
  • [4] Analysis of a Fourier pseudo-spectral conservative scheme for the Klein-Gordon-Schrodinger equation
    Wang, Jialing
    Wang, Yushun
    Liang, Dong
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (01) : 36 - 60
  • [5] A dissipative finite difference Fourier pseudo-spectral method for the Klein-Gordon-Schrodinger equations with damping mechanism
    Ji, Bingquan
    Zhang, Luming
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 376
  • [6] Optimal error estimate of a linear Fourier pseudo-spectral scheme for two dimensional Klein-Gordon-Schrodinger equations
    Hong, Qi
    Wang, Yushun
    Wang, Jialing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 468 (02) : 817 - 838
  • [7] Semi-explicit symplectic partitioned Runge-Kutta Fourier pseudo-spectral scheme for Klein-Gordon-Schrodinger equations
    Kong, Linghua
    Zhang, Jingjing
    Cao, Ying
    Duan, Yali
    Huang, Hong
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (08) : 1369 - 1377
  • [8] Conservative Fourier spectral scheme for higher order Klein-Gordon-Schrodinger equations
    Wang, Junjie
    Dai, Hongbin
    Hui, Yuanxian
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 156 : 446 - 466
  • [9] A Fourier spectral method for the nonlinear coupled space fractional Klein-Gordon-Schrodinger equations
    Jia, Junqing
    Jiang, Xiaoyun
    Yang, Xiu
    Zhang, Hui
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (02):
  • [10] Conservative Fourier spectral method and numerical investigation of space fractional Klein-Gordon-Schrodinger equations
    Wang, Junjie
    Xiao, Aiguo
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 350 : 348 - 365