A dissipative finite difference Fourier pseudo-spectral method for the Klein-Gordon-Schrodinger equations with damping mechanism

被引:7
|
作者
Ji, Bingquan [1 ]
Zhang, Luming [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211101, Peoples R China
基金
中国国家自然科学基金;
关键词
Klein-Gordon-Schrodinger equation with damping mechanism; The discrete invariant law; The discrete dissipative property; Error estimates; NUMERICAL-SIMULATION; SCHEMES;
D O I
10.1016/j.amc.2020.125148
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a semi-linearized, decoupled time-stepping method for solving the KleinGordon-Schrodinger equations with damping mechanism. The finite difference approximation in time and Fourier pseudo-spectral discretization in space provide an elegant platform to deal with the physical properties of the original model. We prove that the proposed numerical algorithm preserves the discrete invariant or dissipative properties of system exactly depending on the choices of the damping parameter values. We establish the maximum norm error estimates by virtue of the norm-equivalence between finite difference method and Fourier pseudo-spectral method, the discrete versions of projection and interpolation estimations, and mathematical induction argument. Ample numerical results are presented to show the effectiveness of our numerical method and to confirm our theoretical analysis. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrodinger equations
    Kong LingHua
    Wang Lan
    Jiang ShanShan
    Duan YaLi
    [J]. SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 915 - 932
  • [2] Conservative Fourier pseudo-spectral schemes for general Klein-Gordon-Schrodinger equations
    Wang, Junjie
    Cai, Shanshan
    Ni, Yonggen
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (06) : 1339 - 1362
  • [3] Analysis of a Fourier pseudo-spectral conservative scheme for the Klein-Gordon-Schrodinger equation
    Wang, Jialing
    Wang, Yushun
    Liang, Dong
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (01) : 36 - 60
  • [4] THE FINITE DIFFERENCE METHOD FOR DISSIPATIVE KLEIN-GORDON-SCHRODINGER EQUATIONS IN THREE SPACE DIMENSIONS
    Zhang, Fayong
    Han, Bo
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2010, 28 (06) : 879 - 900
  • [5] Optimal error estimate of a linear Fourier pseudo-spectral scheme for two dimensional Klein-Gordon-Schrodinger equations
    Hong, Qi
    Wang, Yushun
    Wang, Jialing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 468 (02) : 817 - 838
  • [6] A dissipative finite difference Fourier pseudo-spectral method for the symmetric regularized long wave equation with damping mechanism
    Ji, Bingquan
    Zhang, Luming
    Sun, Qihang
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 154 : 90 - 103
  • [7] Semi-explicit symplectic partitioned Runge-Kutta Fourier pseudo-spectral scheme for Klein-Gordon-Schrodinger equations
    Kong, Linghua
    Zhang, Jingjing
    Cao, Ying
    Duan, Yali
    Huang, Hong
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (08) : 1369 - 1377
  • [8] A Fourier spectral method for the nonlinear coupled space fractional Klein-Gordon-Schrodinger equations
    Jia, Junqing
    Jiang, Xiaoyun
    Yang, Xiu
    Zhang, Hui
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (02):
  • [9] Error estimates of a conservative finite difference Fourier pseudospectral method for the Klein-Gordon-Schrodinger equation
    Ji, Bingquan
    Zhang, Luming
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (07) : 1956 - 1971
  • [10] Conservative Fourier spectral method and numerical investigation of space fractional Klein-Gordon-Schrodinger equations
    Wang, Junjie
    Xiao, Aiguo
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 350 : 348 - 365