Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrdinger equations

被引:1
|
作者
KONG LingHua [1 ]
WANG Lan [1 ]
JIANG ShanShan [2 ]
DUAN YaLi [3 ]
机构
[1] School of Mathematics and Information Science,Jiangxi Normal University
[2] School of Science,Beijing University of Chemical Technology
[3] School of Mathematics,University of Science and Technology of China
基金
中国国家自然科学基金;
关键词
Klein-Gordon-Schrdinger equations; multisymplectic integrator; Fourier pseudo-spectral method; conservation law; soliton;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
070104 ;
摘要
A multisymplectic Fourier pseudo-spectral scheme,which exactly preserves the discrete multisymplectic conservation law,is presented to solve the Klein-Gordon-Schrdinger equations.The scheme is of spectral accuracy in space and of second order in time.The scheme preserves the discrete multisymplectic conservation law and the charge conservation law.Moreover,the residuals of some other conservation laws are derived for the geometric numerical integrator.Extensive numerical simulations illustrate the numerical behavior of the multisymplectic scheme,and demonstrate the correctness of the theoretical analysis.
引用
收藏
页码:916 / 933
页数:18
相关论文
共 50 条
  • [1] Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrödinger equations
    LingHua Kong
    Lan Wang
    ShanShan Jiang
    YaLi Duan
    [J]. Science China Mathematics, 2013, 56 : 915 - 932
  • [2] Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrodinger equations
    Kong LingHua
    Wang Lan
    Jiang ShanShan
    Duan YaLi
    [J]. SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 915 - 932
  • [3] Multisymplectic implicit and explicit methods for Klein-Gordon-Schrdinger equations
    蔡加祥
    杨斌
    梁华
    [J]. Chinese Physics B, 2013, 22 (03) : 103 - 109
  • [4] On Coupled Klein-Gordon-Schrödinger Equations with Acoustic Boundary Conditions
    TaeGab Ha
    JongYeoul Park
    [J]. Boundary Value Problems, 2010
  • [5] Exact solitary wave solutions for the Klein-Gordon-Schrö dinger equations
    Jing-Na X.
    Shu-Xia H.
    Ming-Liang W.
    [J]. Applied Mathematics and Mechanics, 2002, 23 (1): : 58 - 64
  • [6] Global existence and uniform decay for the coupled Klein-Gordon-Schrödinger equations
    M.M. Cavalcanti
    V.N. Domingos Cavalcanti
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2000, 7 : 285 - 307
  • [7] Conservative Fourier pseudo-spectral schemes for general Klein-Gordon-Schrodinger equations
    Wang, Junjie
    Cai, Shanshan
    Ni, Yonggen
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (06) : 1339 - 1362
  • [8] Uniformly accurate nested Picard iterative integrators for the Klein-Gordon-Schrödinger equation in the nonrelativistic regime
    Yongyong Cai
    Xuanxuan Zhou
    [J]. Numerical Algorithms, 2023, 94 : 371 - 396
  • [9] Uniform decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping
    V. Bisognin
    M. M. Cavalcanti
    V. N. Domingos Cavalcanti
    J. Soriano
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2008, 15 : 91 - 113
  • [10] Numerical simulation of coupled Klein-Gordon-Schrödinger equations: RBF partition of unity
    Azarnavid, Babak
    Fardi, Mojtaba
    Mohammadi, Soheila
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 163 : 562 - 575