A Unified View of Nonparametric Trend-Cycle Predictors Via Reproducing Kernel Hilbert Spaces

被引:2
|
作者
Dagum, Estela Bee [1 ]
Bianconcini, Silvia [1 ]
机构
[1] Univ Bologna, Dept Stat, I-40126 Bologna, Italy
关键词
Polynomial kernel regression; Real time analysis; Smoothing cubic splines; Spectral properties; Revisions; C01; C02; C14; SPLINE FUNCTIONS; REGRESSION;
D O I
10.1080/07474938.2012.690674
中图分类号
F [经济];
学科分类号
02 ;
摘要
We provide a common approach for studying several nonparametric estimators used for smoothing functional time series data. Linear filters based on different building assumptions are transformed into kernel functions via reproducing kernel Hilbert spaces. For each estimator, we identify a density function or second order kernel, from which a hierarchy of higher order estimators is derived. These are shown to give excellent representations for the currently applied symmetric filters. In particular, we derive equivalent kernels of smoothing splines in Sobolev and polynomial spaces. The asymmetric weights are obtained by adapting the kernel functions to the length of the various filters, and a theoretical and empirical comparison is made with the classical estimators used in real time analysis. The former are shown to be superior in terms of signal passing, noise suppression and speed of convergence to the symmetric filter.
引用
收藏
页码:848 / 867
页数:20
相关论文
共 50 条
  • [31] ON THE INCLUSION RELATION OF REPRODUCING KERNEL HILBERT SPACES
    Zhang, Haizhang
    Zhao, Liang
    ANALYSIS AND APPLICATIONS, 2013, 11 (02)
  • [32] Quantile regression in reproducing kernel Hilbert spaces
    Li, Youjuan
    Liu, Yufeng
    Zhu, Ji
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 255 - 268
  • [33] Symmetric Operators and Reproducing Kernel Hilbert Spaces
    R. T. W. Martin
    Complex Analysis and Operator Theory, 2010, 4 : 845 - 880
  • [34] Koopman spectra in reproducing kernel Hilbert spaces
    Das, Suddhasattwa
    Giannakis, Dimitrios
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 49 (02) : 573 - 607
  • [35] Remarks on interpolation in reproducing kernel Hilbert spaces
    Bolotnikov, V
    Rodman, L
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (02): : 559 - 576
  • [36] Frames, their relatives and reproducing kernel Hilbert spaces
    Speckbacher, Michael
    Balazs, Peter
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (01)
  • [37] Metamorphosis of images in reproducing kernel Hilbert spaces
    Richardson, Casey L.
    Younes, Laurent
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (03) : 573 - 603
  • [38] Nonlinear expansions in reproducing kernel Hilbert spaces
    Mashreghi, Javad
    Verreault, William
    SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2023, 21 (02):
  • [39] Adaptive Estimation in Reproducing Kernel Hilbert Spaces
    Bobade, Parag
    Majumdar, Suprotim
    Pereira, Savio
    Kurdila, Andrew J.
    Ferris, John B.
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 5678 - 5683
  • [40] Interpolation for multipliers on reproducing kernel Hilbert spaces
    Bolotnikov, V
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (05) : 1373 - 1383