Three-Stage Bidirectional Interaction Network for Efficient RGB-D Salient Object Detection

被引:5
|
作者
Wang, Yang [1 ]
Zhang, Yanqing [1 ]
机构
[1] South China Univ Technol, Guangzhou, Peoples R China
来源
关键词
MODEL;
D O I
10.1007/978-3-031-26348-4_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The addition of depth maps improves the performance of salient object detection (SOD). However, most existing RGB-D SOD methods are inefficient. We observe that existing models take into account the respective advantages of the two modalities but do not fully explore the roles of cross-modality features of various levels. To this end, we remodel the relationship between RGB features and depth features from a new perspective of the feature encoding stage and propose a three-stage bidirectional interaction network (TBINet). Specifically, to obtain robust feature representations, we propose three interaction strategies: bidirectional attention guidance (BAG), bidirectional feature supplement (BFS), and shared network, and use them for the three stages of feature encoder, respectively. In addition, we propose a cross-modality feature aggregation (CFA) module for feature aggregation and refinement. Our model is lightweight (3.7 M parameters) and fast (329 ms on CPU). Experiments on six benchmark datasets show that TBINet outperforms other SOTA methods. Our model achieves the best performance and efficiency trade-off.
引用
收藏
页码:215 / 233
页数:19
相关论文
共 50 条
  • [1] Bidirectional Attentional Interaction Networks for RGB-D salient object detection
    Wei, Weiyi
    Xu, Mengyu
    Wang, Jian
    Luo, Xuzhe
    [J]. IMAGE AND VISION COMPUTING, 2023, 138
  • [2] Bidirectional feature learning network for RGB-D salient object detection
    Niu, Ye
    Zhou, Sanping
    Dong, Yonghao
    Wang, Le
    Wang, Jinjun
    Zheng, Nanning
    [J]. PATTERN RECOGNITION, 2024, 150
  • [3] Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection
    Li, Gongyang
    Liu, Zhi
    Chen, Minyu
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3528 - 3542
  • [4] Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection
    Li, Gongyang
    Liu, Zhi
    Chen, Minyu
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    [J]. IEEE Transactions on Image Processing, 2021, 30 : 3528 - 3542
  • [5] BGRDNet: RGB-D salient object detection with a bidirectional gated recurrent decoding network
    Liu, Zhengyi
    Wang, Yuan
    Zhang, Zhili
    Tan, Yacheng
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (18) : 25519 - 25539
  • [6] BGRDNet: RGB-D salient object detection with a bidirectional gated recurrent decoding network
    Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, China
    [J]. Multimedia Tools Appl, 2022, 18 (25519-25539):
  • [7] BGRDNet: RGB-D salient object detection with a bidirectional gated recurrent decoding network
    Zhengyi Liu
    Yuan Wang
    Zhili Zhang
    Yacheng Tan
    [J]. Multimedia Tools and Applications, 2022, 81 : 25519 - 25539
  • [8] ReBiT-Net: Resource-Efficient Bidirectional Transmission Network for RGB-D Salient Object Detection
    Yi, Youpeng
    Xu, Jiawei
    Zhang, Xiaoqin
    Park, Seop Hyeong
    [J]. JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2024, 19 (08) : 5327 - 5337
  • [9] Cross-Stage Multi-Scale Interaction Network for RGB-D Salient Object Detection
    Yi, Kang
    Zhu, Jinchao
    Guo, Fu
    Xu, Jing
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2402 - 2406
  • [10] MobileSal: Extremely Efficient RGB-D Salient Object Detection
    Wu, Yu-Huan
    Liu, Yun
    Xu, Jun
    Bian, Jia-Wang
    Gu, Yu-Chao
    Cheng, Ming-Ming
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10261 - 10269