ReBiT-Net: Resource-Efficient Bidirectional Transmission Network for RGB-D Salient Object Detection

被引:0
|
作者
Yi, Youpeng [1 ]
Xu, Jiawei [1 ]
Zhang, Xiaoqin [1 ]
Park, Seop Hyeong [2 ]
机构
[1] Wenzhou Univ, Coll Comp Sci & Artificial Intelligence, Wenzhou 325035, Zhejiang, Peoples R China
[2] Hallym Univ, Div Software, Chunchon 24252, Gangwon Do, South Korea
关键词
RGB-D Salient Object Detection; Deep Learning; Efficiency;
D O I
10.1007/s42835-024-01971-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing artificial neural network-based methodologies for salient object detection in RGB-depth (RGB-D) images typically require significant memory and computation time. In this paper, we propose ReBiT-Net, an novel and resource-efficient network designed to addresses this issue. ReBiT-Net utilizes a mobile network for feature extraction and incorporates depth map quality to regulate the fusion of multi-modal features, resulting in top-to-bottom refinement of salient objects using salient information. Empirical evaluations conducted on five benchmark datasets demonstrate the superior performance of our model in terms of accuracy (achieving 334 frames per second for an input size of 320 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 320) and model parameters (merely 5.1 MB). Moreover, we introduce ReBiT-Net*, a simplified variant of ReBiT-Net, which entails reduced model parameters (4.2 MB) and enhanced processing speed (793 frames per second for a 256 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 256 input size). These improvements are achieved through reduced memory requirements and computational demands via the adoption of a smaller input image size.
引用
收藏
页码:5327 / 5337
页数:11
相关论文
共 50 条
  • [1] Bidirectional feature learning network for RGB-D salient object detection
    Niu, Ye
    Zhou, Sanping
    Dong, Yonghao
    Wang, Le
    Wang, Jinjun
    Zheng, Nanning
    [J]. PATTERN RECOGNITION, 2024, 150
  • [2] Three-Stage Bidirectional Interaction Network for Efficient RGB-D Salient Object Detection
    Wang, Yang
    Zhang, Yanqing
    [J]. COMPUTER VISION - ACCV 2022, PT V, 2023, 13845 : 215 - 233
  • [3] BGRDNet: RGB-D salient object detection with a bidirectional gated recurrent decoding network
    Liu, Zhengyi
    Wang, Yuan
    Zhang, Zhili
    Tan, Yacheng
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (18) : 25519 - 25539
  • [4] BGRDNet: RGB-D salient object detection with a bidirectional gated recurrent decoding network
    Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, China
    [J]. Multimedia Tools Appl, 2022, 18 (25519-25539):
  • [5] BGRDNet: RGB-D salient object detection with a bidirectional gated recurrent decoding network
    Zhengyi Liu
    Yuan Wang
    Zhili Zhang
    Yacheng Tan
    [J]. Multimedia Tools and Applications, 2022, 81 : 25519 - 25539
  • [6] Bidirectional Attentional Interaction Networks for RGB-D salient object detection
    Wei, Weiyi
    Xu, Mengyu
    Wang, Jian
    Luo, Xuzhe
    [J]. IMAGE AND VISION COMPUTING, 2023, 138
  • [7] MobileSal: Extremely Efficient RGB-D Salient Object Detection
    Wu, Yu-Huan
    Liu, Yun
    Xu, Jun
    Bian, Jia-Wang
    Gu, Yu-Chao
    Cheng, Ming-Ming
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10261 - 10269
  • [8] AirSOD: A Lightweight Network for RGB-D Salient Object Detection
    Zeng, Zhihong
    Liu, Haijun
    Chen, Fenglei
    Tan, Xiaoheng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1656 - 1669
  • [9] Circular Complement Network for RGB-D Salient Object Detection
    Bai, Zhen
    Liu, Zhi
    Li, Gongyang
    Ye, Linwei
    Wang, Yang
    [J]. NEUROCOMPUTING, 2021, 451 : 95 - 106
  • [10] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1949 - 1961