Bilateral Attention Network for RGB-D Salient Object Detection

被引:0
|
作者
Zhang, Zhao [1 ]
Lin, Zheng [1 ]
Xu, Jun [1 ]
Jin, Wen-Da [2 ]
Lu, Shao-Ping [1 ]
Fan, Deng-Ping [1 ]
机构
[1] Nankai Univ, Coll Comp Sci, TKLNDST, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China
关键词
Bilateral attention; salient object detection; RGB-D image; VISUAL-ATTENTION; VECTOR FLOW; FUSION; RECOGNITION; MODEL;
D O I
10.1109/TIP.2021.3049959
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
RGB-D salient object detection (SOD) aims to segment the most attractive objects in a pair of cross-modal RGB and depth images. Currently, most existing RGB-D SOD methods focus on the foreground region when utilizing the depth images. However, the background also provides important information in traditional SOD methods for promising performance. To better explore salient information in both foreground and background regions, this paper proposes a Bilateral Attention Network (BiANet) for the RGB-D SOD task. Specifically, we introduce a Bilateral Attention Module (BAM) with a complementary attention mechanism: foreground-first (FF) attention and background-first (BF) attention. The FF attention focuses on the foreground region with a gradual refinement style, while the BF one recovers potentially useful salient information in the background region. Benefited from the proposed BAM module, our BiANet can capture more meaningful foreground and background cues, and shift more attention to refining the uncertain details between foreground and background regions. Additionally, we extend our BAM by leveraging the multi-scale techniques for better SOD performance. Extensive experiments on six benchmark datasets demonstrate that our BiANet outperforms other state-of-the-art RGB-D SOD methods in terms of objective metrics and subjective visual comparison. Our BiANet can run up to 80 fps on 224 x 224 RGB-D images, with an NVIDIA GeForce RTX 2080Ti GPU. Comprehensive ablation studies also validate our contributions.
引用
收藏
页码:1949 / 1961
页数:13
相关论文
共 50 条
  • [1] Hybrid-Attention Network for RGB-D Salient Object Detection
    Chen, Yuzhen
    Zhou, Wujie
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (17):
  • [2] JALNet: joint attention learning network for RGB-D salient object detection
    Gao, Xiuju
    Cui, Jianhua
    Meng, Jin
    Shi, Huaizhong
    Duan, Songsong
    Xia, Chenxing
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2024, 27 (01) : 36 - 47
  • [3] LIANet: Layer Interactive Attention Network for RGB-D Salient Object Detection
    Han, Yibo
    Wang, Liejun
    Du, Anyu
    Jiang, Shaochen
    [J]. IEEE ACCESS, 2022, 10 : 25435 - 25447
  • [4] A cascaded refined rgb-d salient object detection network based on the attention mechanism
    Zong, Guanyu
    Wei, Longsheng
    Guo, Siyuan
    Wang, Yongtao
    [J]. APPLIED INTELLIGENCE, 2023, 53 (11) : 13527 - 13548
  • [5] A cascaded refined rgb-d salient object detection network based on the attention mechanism
    Guanyu Zong
    Longsheng Wei
    Siyuan Guo
    Yongtao Wang
    [J]. Applied Intelligence, 2023, 53 : 13527 - 13548
  • [6] AirSOD: A Lightweight Network for RGB-D Salient Object Detection
    Zeng, Zhihong
    Liu, Haijun
    Chen, Fenglei
    Tan, Xiaoheng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1656 - 1669
  • [7] Circular Complement Network for RGB-D Salient Object Detection
    Bai, Zhen
    Liu, Zhi
    Li, Gongyang
    Ye, Linwei
    Wang, Yang
    [J]. NEUROCOMPUTING, 2021, 451 : 95 - 106
  • [8] Dynamic Selective Network for RGB-D Salient Object Detection
    Wen, Hongfa
    Yan, Chenggang
    Zhou, Xiaofei
    Cong, Runmin
    Sun, Yaoqi
    Zheng, Bolun
    Zhang, Jiyong
    Bao, Yongjun
    Ding, Guiguang
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 9179 - 9192
  • [9] DYNAMIC SELECTION NETWORK FOR RGB-D SALIENT OBJECT DETECTION
    Zhou, Jinlin
    Luo, Zhiming
    Li, Shaozi
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 776 - 780
  • [10] Siamese Network for RGB-D Salient Object Detection and Beyond
    Fu, Keren
    Fan, Deng-Ping
    Ji, Ge-Peng
    Zhao, Qijun
    Shen, Jianbing
    Zhu, Ce
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5541 - 5559