DYNAMIC SELECTION NETWORK FOR RGB-D SALIENT OBJECT DETECTION

被引:1
|
作者
Zhou, Jinlin [1 ]
Luo, Zhiming [1 ]
Li, Shaozi [1 ]
机构
[1] Xiamen Univ, Dept Artificial Intelligence, Xiamen, Peoples R China
关键词
RGB-D; salient object detection; dynamic; skip connection;
D O I
10.1109/ICIP46576.2022.9897821
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing RGB-D salient object detection (SOD) methods usually use elaborate fusion modules for exploring cross-modal information, which is computationally expensive and ignores the noise depth information. To deal with this issue, we propose a dynamic selection network (DSNet) for RGB-D salient object detection. Specifically, a cross-modal combination module (CCM) is proposed to fuse two modalities with a light computation. Then a dynamic selection module (DSM) adaptively learns the model parameter for the decoding based on the fused features. Furthermore, skip connection is used for hierarchical features combination between encoder and decoder. Experiments on four popular datasets demonstrate our model outperforms other state-of-the-art methods.
引用
收藏
页码:776 / 780
页数:5
相关论文
共 50 条
  • [1] Dynamic Selective Network for RGB-D Salient Object Detection
    Wen, Hongfa
    Yan, Chenggang
    Zhou, Xiaofei
    Cong, Runmin
    Sun, Yaoqi
    Zheng, Bolun
    Zhang, Jiyong
    Bao, Yongjun
    Ding, Guiguang
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 9179 - 9192
  • [2] DMNet: Dynamic Memory Network for RGB-D Salient Object Detection
    Du, Haishun
    Zhang, Zhen
    Zhang, Minghao
    Qiao, Kangyi
    [J]. DIGITAL SIGNAL PROCESSING, 2023, 142
  • [3] Dynamic Message Propagation Network for RGB-D and Video Salient Object Detection
    Chen, Baian
    Chen, Zhilei
    Hu, Xiaowei
    Xu, Jun
    Xie, Haoran
    Qin, Jing
    Wei, Mingqiang
    [J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (01)
  • [4] AirSOD: A Lightweight Network for RGB-D Salient Object Detection
    Zeng, Zhihong
    Liu, Haijun
    Chen, Fenglei
    Tan, Xiaoheng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1656 - 1669
  • [5] Circular Complement Network for RGB-D Salient Object Detection
    Bai, Zhen
    Liu, Zhi
    Li, Gongyang
    Ye, Linwei
    Wang, Yang
    [J]. NEUROCOMPUTING, 2021, 451 : 95 - 106
  • [6] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    [J]. IEEE Transactions on Image Processing, 2021, 30 : 1949 - 1961
  • [7] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1949 - 1961
  • [8] Siamese Network for RGB-D Salient Object Detection and Beyond
    Fu, Keren
    Fan, Deng-Ping
    Ji, Ge-Peng
    Zhao, Qijun
    Shen, Jianbing
    Zhu, Ce
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5541 - 5559
  • [9] Adaptive fusion network for RGB-D salient object detection
    Chen, Tianyou
    Xiao, Jin
    Hu, Xiaoguang
    Zhang, Guofeng
    Wang, Shaojie
    [J]. NEUROCOMPUTING, 2023, 522 : 152 - 164
  • [10] Bifurcation Fusion Network for RGB-D Salient Object Detection
    Zhao, Zhi-Hua
    Chen, Li
    [J]. JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (12)