Bilateral Attention Network for RGB-D Salient Object Detection

被引:0
|
作者
Zhang, Zhao [1 ]
Lin, Zheng [1 ]
Xu, Jun [1 ]
Jin, Wen-Da [2 ]
Lu, Shao-Ping [1 ]
Fan, Deng-Ping [1 ]
机构
[1] Nankai Univ, Coll Comp Sci, TKLNDST, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China
关键词
Bilateral attention; salient object detection; RGB-D image; VISUAL-ATTENTION; VECTOR FLOW; FUSION; RECOGNITION; MODEL;
D O I
10.1109/TIP.2021.3049959
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
RGB-D salient object detection (SOD) aims to segment the most attractive objects in a pair of cross-modal RGB and depth images. Currently, most existing RGB-D SOD methods focus on the foreground region when utilizing the depth images. However, the background also provides important information in traditional SOD methods for promising performance. To better explore salient information in both foreground and background regions, this paper proposes a Bilateral Attention Network (BiANet) for the RGB-D SOD task. Specifically, we introduce a Bilateral Attention Module (BAM) with a complementary attention mechanism: foreground-first (FF) attention and background-first (BF) attention. The FF attention focuses on the foreground region with a gradual refinement style, while the BF one recovers potentially useful salient information in the background region. Benefited from the proposed BAM module, our BiANet can capture more meaningful foreground and background cues, and shift more attention to refining the uncertain details between foreground and background regions. Additionally, we extend our BAM by leveraging the multi-scale techniques for better SOD performance. Extensive experiments on six benchmark datasets demonstrate that our BiANet outperforms other state-of-the-art RGB-D SOD methods in terms of objective metrics and subjective visual comparison. Our BiANet can run up to 80 fps on 224 x 224 RGB-D images, with an NVIDIA GeForce RTX 2080Ti GPU. Comprehensive ablation studies also validate our contributions.
引用
收藏
页码:1949 / 1961
页数:13
相关论文
共 50 条
  • [31] Salient object detection for RGB-D images by generative adversarial network
    Liu, Zhengyi
    Tang, Jiting
    Xiang, Qian
    Zhao, Peng
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (35-36) : 25403 - 25425
  • [32] Scale Adaptive Fusion Network for RGB-D Salient Object Detection
    Kong, Yuqiu
    Zheng, Yushuo
    Yao, Cuili
    Liu, Yang
    Wang, He
    [J]. COMPUTER VISION - ACCV 2022, PT III, 2023, 13843 : 608 - 625
  • [33] An adaptive guidance fusion network for RGB-D salient object detection
    Haodong Sun
    Yu Wang
    Xinpeng Ma
    [J]. Signal, Image and Video Processing, 2024, 18 : 1683 - 1693
  • [34] Salient object detection for RGB-D images by generative adversarial network
    Zhengyi Liu
    Jiting Tang
    Qian Xiang
    Peng Zhao
    [J]. Multimedia Tools and Applications, 2020, 79 : 25403 - 25425
  • [35] RGB-D Salient Object Detection Using Saliency and Edge Reverse Attention
    Ikeda, Tomoki
    Ikehara, Masaaki
    [J]. IEEE ACCESS, 2023, 11 : 68818 - 68825
  • [36] Synergizing triple attention with depth quality for RGB-D salient object detection
    Song, Peipei
    Li, Wenyu
    Zhong, Peiyan
    Zhang, Jing
    Konuisz, Piotr
    Duan, Feng
    Barnes, Nick
    [J]. NEUROCOMPUTING, 2024, 589
  • [37] Attention-guided Multi-modality Interaction Network for RGB-D Salient Object Detection
    Wang, Ruimin
    Wang, Fasheng
    Su, Yiming
    Sun, Jing
    Sun, Fuming
    Li, Haojie
    [J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (03)
  • [38] Dual attention guided multi-scale fusion network for RGB-D salient object detection
    Gao, Huan
    Guo, Jichang
    Wang, Yudong
    Dong, Jianan
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 118
  • [39] ASIF-Net: Attention Steered Interweave Fusion Network for RGB-D Salient Object Detection
    Li, Chongyi
    Cong, Runmin
    Kwong, Sam
    Hou, Junhui
    Fu, Huazhu
    Zhu, Guopu
    Zhang, Dingwen
    Huang, Qingming
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (01) : 88 - 100
  • [40] DPANet: Depth Potentiality-Aware Gated Attention Network for RGB-D Salient Object Detection
    Chen, Zuyao
    Cong, Runmin
    Xu, Qianqian
    Huang, Qingming
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 7012 - 7024