Hybrid-Attention Network for RGB-D Salient Object Detection

被引:9
|
作者
Chen, Yuzhen [1 ]
Zhou, Wujie [1 ,2 ]
机构
[1] Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou 310023, Peoples R China
[2] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 17期
基金
中国博士后科学基金;
关键词
neural networks; deep learning; salient object detection; RGB-D;
D O I
10.3390/app10175806
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Depth information has been widely used to improve RGB-D salient object detection by extracting attention maps to determine the position information of objects in an image. However, non-salient objects may be close to the depth sensor and present high pixel intensities in the depth maps. This situation in depth maps inevitably leads to erroneously emphasize non-salient areas and may have a negative impact on the saliency results. To mitigate this problem, we propose a hybrid attention neural network that fuses middle- and high-level RGB features with depth features to generate a hybrid attention map to remove background information. The proposed network extracts multilevel features from RGB images using the Res2Net architecture and then integrates high-level features from depth maps using the Inception-v4-ResNet2 architecture. The mixed high-level RGB features and depth features generate the hybrid attention map, which is then multiplied to the low-level RGB features. After decoding by several convolutions and upsampling, we obtain the final saliency prediction, achieving state-of-the-art performance on the NJUD and NLPR datasets. Moreover, the proposed network has good generalization ability compared with other methods. An ablation study demonstrates that the proposed network effectively performs saliency prediction even when non-salient objects interfere detection. In fact, after removing the branch with high-level RGB features, the RGB attention map that guides the network for saliency prediction is lost, and all the performance measures decline. The resulting prediction map from the ablation study shows the effect of non-salient objects close to the depth sensor. This effect is not present when using the complete hybrid attention network. Therefore, RGB information can correct and supplement depth information, and the corresponding hybrid attention map is more robust than using a conventional attention map constructed only with depth information.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1949 - 1961
  • [2] JALNet: joint attention learning network for RGB-D salient object detection
    Gao, Xiuju
    Cui, Jianhua
    Meng, Jin
    Shi, Huaizhong
    Duan, Songsong
    Xia, Chenxing
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2024, 27 (01) : 36 - 47
  • [3] LIANet: Layer Interactive Attention Network for RGB-D Salient Object Detection
    Han, Yibo
    Wang, Liejun
    Du, Anyu
    Jiang, Shaochen
    [J]. IEEE ACCESS, 2022, 10 : 25435 - 25447
  • [4] Hybrid Attention Mechanism and Forward Feedback Unit for RGB-D Salient Object Detection
    Li, Haitang
    Han, Yibo
    Li, Peiling
    Li, Xiaohui
    Shi, Lijuan
    [J]. IEEE ACCESS, 2023, 11 : 96068 - 96080
  • [5] A cascaded refined rgb-d salient object detection network based on the attention mechanism
    Zong, Guanyu
    Wei, Longsheng
    Guo, Siyuan
    Wang, Yongtao
    [J]. APPLIED INTELLIGENCE, 2023, 53 (11) : 13527 - 13548
  • [6] A cascaded refined rgb-d salient object detection network based on the attention mechanism
    Guanyu Zong
    Longsheng Wei
    Siyuan Guo
    Yongtao Wang
    [J]. Applied Intelligence, 2023, 53 : 13527 - 13548
  • [7] AirSOD: A Lightweight Network for RGB-D Salient Object Detection
    Zeng, Zhihong
    Liu, Haijun
    Chen, Fenglei
    Tan, Xiaoheng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1656 - 1669
  • [8] Circular Complement Network for RGB-D Salient Object Detection
    Bai, Zhen
    Liu, Zhi
    Li, Gongyang
    Ye, Linwei
    Wang, Yang
    [J]. NEUROCOMPUTING, 2021, 451 : 95 - 106
  • [9] DYNAMIC SELECTION NETWORK FOR RGB-D SALIENT OBJECT DETECTION
    Zhou, Jinlin
    Luo, Zhiming
    Li, Shaozi
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 776 - 780
  • [10] Siamese Network for RGB-D Salient Object Detection and Beyond
    Fu, Keren
    Fan, Deng-Ping
    Ji, Ge-Peng
    Zhao, Qijun
    Shen, Jianbing
    Zhu, Ce
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5541 - 5559