MobileSal: Extremely Efficient RGB-D Salient Object Detection

被引:63
|
作者
Wu, Yu-Huan [1 ]
Liu, Yun [1 ]
Xu, Jun [1 ]
Bian, Jia-Wang [2 ]
Gu, Yu-Chao [1 ]
Cheng, Ming-Ming [1 ]
机构
[1] Nankai Univ, Coll Comp Sci, TKLNDST, Tianjin 300350, Peoples R China
[2] Univ Adelaide, Adelaide, SA 5005, Australia
关键词
RGB-D salient object detection; efficiency; implicit depth restoration; REGION DETECTION; NETWORK; IMAGE; INFORMATION; INSTANCE;
D O I
10.1109/TPAMI.2021.3134684
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The high computational cost of neural networks has prevented recent successes in RGB-D salient object detection (SOD) from benefiting real-world applications. Hence, this article introduces a novel network, MobileSal, which focuses on efficient RGB-D SOD using mobile networks for deep feature extraction. However, mobile networks are less powerful in feature representation than cumbersome networks. To this end, we observe that the depth information of color images can strengthen the feature representation related to SOD if leveraged properly. Therefore, we propose an implicit depth restoration (IDR) technique to strengthen the mobile networks' feature representation capability for RGB-D SOD. IDR is only adopted in the training phase and is omitted during testing, so it is computationally free. Besides, we propose compact pyramid refinement (CPR) for efficient multi-level feature aggregation to derive salient objects with clear boundaries. With IDR and CPR incorporated, MobileSal performs favorably against state-of-the-art methods on six challenging RGB-D SOD datasets with much faster speed (450fps for the input size of 320 x 320) and fewer parameters (6.5M). The code is released at https://mmcheng.net/mobilesal.
引用
收藏
页码:10261 / 10269
页数:9
相关论文
共 50 条
  • [1] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    [J]. Computational Visual Media, 2021, 7 : 37 - 69
  • [2] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    [J]. Computational Visual Media, 2021, 7 (01) : 37 - 69
  • [3] RGB-D salient object detection: A survey
    Zhou, Tao
    Fan, Deng-Ping
    Cheng, Ming-Ming
    Shen, Jianbing
    Shao, Ling
    [J]. COMPUTATIONAL VISUAL MEDIA, 2021, 7 (01) : 37 - 69
  • [4] Calibrated RGB-D Salient Object Detection
    Ji, Wei
    Li, Jingjing
    Yu, Shuang
    Zhang, Miao
    Piao, Yongri
    Yao, Shunyu
    Bi, Qi
    Ma, Kai
    Zheng, Yefeng
    Lu, Huchuan
    Cheng, Li
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9466 - 9476
  • [5] DVSOD: RGB-D Video Salient Object Detection
    Li, Jingjing
    Ji, Wei
    Wang, Size
    Li, Wenbo
    Cheng, Li
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [6] Advancing in RGB-D Salient Object Detection: A Survey
    Chen, Ai
    Li, Xin
    He, Tianxiang
    Zhou, Junlin
    Chen, Duanbing
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [7] Adaptive Fusion for RGB-D Salient Object Detection
    Wang, Ningning
    Gong, Xiaojin
    [J]. IEEE ACCESS, 2019, 7 : 55277 - 55284
  • [8] AirSOD: A Lightweight Network for RGB-D Salient Object Detection
    Zeng, Zhihong
    Liu, Haijun
    Chen, Fenglei
    Tan, Xiaoheng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1656 - 1669
  • [9] Aggregate interactive learning for RGB-D salient object detection
    Wu, Jingyu
    Sun, Fuming
    Xu, Rui
    Meng, Jie
    Wang, Fasheng
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 195
  • [10] Circular Complement Network for RGB-D Salient Object Detection
    Bai, Zhen
    Liu, Zhi
    Li, Gongyang
    Ye, Linwei
    Wang, Yang
    [J]. NEUROCOMPUTING, 2021, 451 : 95 - 106